Symmetric Boolean functions and their metric properties matrices of transitions of differences when using some modular groups
Matematičeskie voprosy kriptografii, Tome 4 (2013), pp. 49-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various metric properties of symmetric Boolean functions are analysed (including the case of random functions). The minimal and maximal distances from a given Boolean function to the set of symmetric functions (as well to its subsets) are found. The structure and the size of the set of functions which are the farthest from the symmetric functions set are investigated.
@article{MVK_2013_4_a3,
     author = {G. I. Ivchenko and Yu. I. Medvedev and V. A. Mironova},
     title = {Symmetric {Boolean} functions and their metric properties matrices of transitions of differences when using some modular groups},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {49--63},
     publisher = {mathdoc},
     volume = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2013_4_a3/}
}
TY  - JOUR
AU  - G. I. Ivchenko
AU  - Yu. I. Medvedev
AU  - V. A. Mironova
TI  - Symmetric Boolean functions and their metric properties matrices of transitions of differences when using some modular groups
JO  - Matematičeskie voprosy kriptografii
PY  - 2013
SP  - 49
EP  - 63
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2013_4_a3/
LA  - ru
ID  - MVK_2013_4_a3
ER  - 
%0 Journal Article
%A G. I. Ivchenko
%A Yu. I. Medvedev
%A V. A. Mironova
%T Symmetric Boolean functions and their metric properties matrices of transitions of differences when using some modular groups
%J Matematičeskie voprosy kriptografii
%D 2013
%P 49-63
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2013_4_a3/
%G ru
%F MVK_2013_4_a3
G. I. Ivchenko; Yu. I. Medvedev; V. A. Mironova. Symmetric Boolean functions and their metric properties matrices of transitions of differences when using some modular groups. Matematičeskie voprosy kriptografii, Tome 4 (2013), pp. 49-63. http://geodesic.mathdoc.fr/item/MVK_2013_4_a3/

[1] Canteaut A., Videau M., “Symmetric Boolean Function”, IEEE Trans. Inf. Theory, 51:8 (2005), 2791–2811 | DOI | MR | Zbl

[2] Sarkar S., Maitra S., “Efficient search for symmetric Boolean functions under constraints on Walsh spectra values”, J. Comb. Math. and Comb. Comput., 68 (2009), 163–191 | MR | Zbl

[3] Mouffron M., “Balanced alternating and symmetric functions over finite sets”, Workshop on Boolean Functions: Cryptography and Applications (BFCA' 08), Copenhagen, Denmark, 2008, 27–44 | MR

[4] Ivchenko G. I., Medvedev Yu. I., Mironova V. A., “Analiz spektra sluchainykh simmetricheskikh bulevykh funktsii”, Matematicheskie voprosy kriptografii, 4:1 (2013), 59–76

[5] Timashev A. N., Bolshie ukloneniya v veroyatnostnoi kombinatorike, Izdatelskii dom “Akademiya”, M., 2011, 248 pp.

[6] Lipton R. J., Markakis E., Mehta A., Vishnoi N. K., “On the Fourier spectrum of symmetric Boolean functions with applications to learning symmetric juntas”, IEEE Conf. Comput. Compl., 2005, 112–119

[7] Kolountzakis M. N., Lipton R. J., Markakis E., Mehta A., Vishnoi N. K., “On the Fourier spectrum of symmetric Boolean functions”, Combinatorica, 29:3 (2009), 363–387 | DOI | MR | Zbl

[8] Lucas E., “Sur les cogruences des nombres euleriens et des coefficients differentiels des fonctions trigonometriques, suivant un module premier”, Bull. Soc. Math. de France, 6 (1878), 19–54 | MR