Parameters of Boolean functions generated by the most significant bits of linear recurrent sequences
Matematičeskie voprosy kriptografii, Tome 3 (2012), pp. 25-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

The families of Boolean functions generated by the most significant bits of linear recurrent sequences over the ring $\mathbb Z_{2^n}$ with the marked characteristic polynomial are considered. For these families we investigate their cardinalities, the weights and the degree of nonlinearity of functions, distances between functions. We prove that there exists a rearrangement of arguments (one and the same for all functions in the family) such that the family contains functions which are close to some bent-functions.
@article{MVK_2012_3_a1,
     author = {D. N. Bylkov and O. V. Kamlovskii},
     title = {Parameters of {Boolean} functions generated by the most significant bits of linear recurrent sequences},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {25--53},
     publisher = {mathdoc},
     volume = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2012_3_a1/}
}
TY  - JOUR
AU  - D. N. Bylkov
AU  - O. V. Kamlovskii
TI  - Parameters of Boolean functions generated by the most significant bits of linear recurrent sequences
JO  - Matematičeskie voprosy kriptografii
PY  - 2012
SP  - 25
EP  - 53
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2012_3_a1/
LA  - ru
ID  - MVK_2012_3_a1
ER  - 
%0 Journal Article
%A D. N. Bylkov
%A O. V. Kamlovskii
%T Parameters of Boolean functions generated by the most significant bits of linear recurrent sequences
%J Matematičeskie voprosy kriptografii
%D 2012
%P 25-53
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2012_3_a1/
%G ru
%F MVK_2012_3_a1
D. N. Bylkov; O. V. Kamlovskii. Parameters of Boolean functions generated by the most significant bits of linear recurrent sequences. Matematičeskie voprosy kriptografii, Tome 3 (2012), pp. 25-53. http://geodesic.mathdoc.fr/item/MVK_2012_3_a1/

[1] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Matem. sbornik, 184:3 (1993), 21–56 | MR | Zbl

[2] Kuzmin A. S., Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad koltsami Galua”, Algebra i logika, 34:2 (1995), 169–189 | MR

[3] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, TVP, M., 1997, 139–202 | MR | Zbl

[4] Kumar P. V., Helleseth T., “An expansion for the coordinates of the trace function over Galois rings”, Appl. Algebra in Eng. Comm. and Comput., 8:5 (1997), 353–361 | DOI | MR | Zbl

[5] Kuzmin A. S., Nechaev A. A., “Vosstanovlenie lineinoi rekurrenty maksimalnogo perioda nad koltsom Galua po ee starshei koordinatnoi posledovatelnosti”, Diskretn. matem., 23:2 (2011), 3–31 | DOI | MR | Zbl

[6] Kuzmin A. S., Marshalko G. B., Nechaev A. A., “Vosstanovlenie lineinoi rekurrenty nad primarnym koltsom vychetov po ee uslozhneniyu”, Matem. voprosy kriptografii, 1:2 (2010), 31–56

[7] Bylkov D. N., Nechaev A. A., “Algoritm vosstanovleniya posledovatelnostei, poluchennykh lineinym uslozhneniem koordinatnykh posledovatelnostei LRP nad koltsom $R=\mathbb Z_{p^n}$”, Diskretn. matem., 22:4 (2010), 104–120 | DOI | MR | Zbl

[8] Bylkov D. N., “Klass uslozhnenii lineinykh rekurrent nad koltsom Galua, ne privodyaschii k potere informatsii”, Problemy peredachi informatsii, 46:3 (2010), 51–59 | MR | Zbl

[9] Shparlinski I. E., Winterhof A., “On the nonlinearity of linear recurrence sequences”, Appl. Math. Lett., 19 (2005), 340–344 | DOI | MR

[10] Mak-Vilyams F. D., Sloen N. D. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979, 744 pp.

[11] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskretn. matem., 1:4 (1989), 123–139 | MR | Zbl

[12] Lahtonen L., Ling S., Sole P., Zinoviev D., “$\mathbb Z_8$-Kerdock codes and pseudorandom binary sequences”, J. Complexity, 20:8 (2004), 318–330 | DOI | MR | Zbl

[13] Sole P., Zinoviev D., “Low-correlation, high-nonlinearity sequences for multiple-code CDMA”, IEEE Trans. Inform. Theory, 52:11 (2006), 5158–5163 | DOI | MR

[14] Kuzmin A. S., Nechaev A. A., “Postroenie pomekhoustoichivykh kodov s ispolzovaniem lineinykh rekurrent nad koltsami Galua”, Uspekhi matem. nauk, 47:5 (1992), 183–184 | MR | Zbl

[15] Kamlovskii O. V., “Metod trigonometricheskikh summ dlya issledovaniya chastot $r$-gramm v starshikh koordinatnykh posledovatelnostyakh lineinykh rekurrent nad koltsom $\mathbb Z_{2^n}$”, Matem. voprosy kriptografii, 1:4 (2010), 33–62

[16] Kuzmin A. S., Nechaev A. A., “Complete weight enumerators of generalized Kerdock code and related linear codes over Galois ring”, Discr. Appl. Math., 111 (2001), 117–137 | DOI | MR | Zbl

[17] Boztas S., Hammous R., Kumar P. V., “$4$-phase sequences with near-optimum correlation properties”, IEEE Trans. Inform. Theory, 38:3 (1992), 1101–1113 | DOI | Zbl

[18] Kamlovskii O. V., Kuzmin A. S., “Otsenki chastot poyavleniya elementov v lineinykh rekurrentnykh posledovatelnostyakh nad koltsami Galua”, Fundam. i prikl. matematika, 6:4 (2000), 1083–1094 | MR | Zbl

[19] Kamlovskii O. V., “Chastotnye kharakteristiki lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Matem. sbornik, 200:4 (2009), 31–52 | DOI | MR | Zbl

[20] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004, 470 pp. | MR

[21] Lempel A., “Matrix factorization over $\mathbb F_2$ and trace-orthogonal basis of $\mathbb F_{2^n}$”, SIAM J. Comput., 4 (1975), 175–186 | DOI | MR | Zbl