Random mappings of sets with restrictions on parameters. I
Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 1, pp. 125-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Random mappings $\sigma\colon X\to X$ of $n$-set $X$ with constraints on degrees of vertices in a directed graph $\Gamma(\sigma)$ are considered. Mappings corresponding to the binary shift register of length $l$ with a random feedback function are particular cases of this model.
@article{MVK_2012_3_1_a4,
     author = {V. N. Sachkov},
     title = {Random mappings of sets with restrictions on {parameters.~I}},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {125--144},
     year = {2012},
     volume = {3},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2012_3_1_a4/}
}
TY  - JOUR
AU  - V. N. Sachkov
TI  - Random mappings of sets with restrictions on parameters. I
JO  - Matematičeskie voprosy kriptografii
PY  - 2012
SP  - 125
EP  - 144
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2012_3_1_a4/
LA  - ru
ID  - MVK_2012_3_1_a4
ER  - 
%0 Journal Article
%A V. N. Sachkov
%T Random mappings of sets with restrictions on parameters. I
%J Matematičeskie voprosy kriptografii
%D 2012
%P 125-144
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2012_3_1_a4/
%G ru
%F MVK_2012_3_1_a4
V. N. Sachkov. Random mappings of sets with restrictions on parameters. I. Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 1, pp. 125-144. http://geodesic.mathdoc.fr/item/MVK_2012_3_1_a4/

[1] Arney Y., Bender E., “Random mappings with constraints on coalescence and number of origins”, Pacific J. Math., 103:2 (1982), 269–294 | MR | Zbl

[2] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, 2-e izd., MTsNMO, M., 2004