Natural metrics and their properties. P. 2. Hamming-type metrics
Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 1, pp. 71-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Natutal overmetrics and submetrics “nearest” to the Hamming metrics are described, analogues of the Hamming metrics are constructed. Natural metrics on the vector spaces with isometry group containing the shift group are considered. By means of $(n+1)$-valued submetrics of $2^n$-valued overmetrics of the Hamming metrics a class of codes which are equivalent to a code with the Hamming metrics relatively to the linear group.
@article{MVK_2012_3_1_a2,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {Natural metrics and their properties. {P.~2.} {Hamming-type} metrics},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {71--95},
     year = {2012},
     volume = {3},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2012_3_1_a2/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - Natural metrics and their properties. P. 2. Hamming-type metrics
JO  - Matematičeskie voprosy kriptografii
PY  - 2012
SP  - 71
EP  - 95
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2012_3_1_a2/
LA  - ru
ID  - MVK_2012_3_1_a2
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T Natural metrics and their properties. P. 2. Hamming-type metrics
%J Matematičeskie voprosy kriptografii
%D 2012
%P 71-95
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2012_3_1_a2/
%G ru
%F MVK_2012_3_1_a2
B. A. Pogorelov; M. A. Pudovkina. Natural metrics and their properties. P. 2. Hamming-type metrics. Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 1, pp. 71-95. http://geodesic.mathdoc.fr/item/MVK_2012_3_1_a2/

[1] Pogorelov B. A., “Podmetriki metriki Khemminga i teorema A. A. Markova”, Trudy po diskretnoi matematike, 9, FIZMATLIT, M., 2006, 190–219

[2] Pogorelov B. A., Pudovkina M. A., “Podmetriki metriki Khemminga i preobrazovaniya, rasprostranyayuschie iskazheniya v zadannoe chislo raz”, Trudy po diskretnoi matematike, 10, FIZMATLIT, M., 2007, 202–238

[3] Pogorelov B. A., Pudovkina M. A., “Podmetriki Khemminga i ikh gruppy izometrii”, Trudy po diskretnoi matematike, 11, no. 2, FIZMATLIT, M., 2008, 147–191

[4] Muzychuk M. E., “Podskhemy skhemy Khemminga”, Issledovaniya po algebraicheskoi teorii kombinatornykh ob'ektov, Tr. seminara, VNIISI, M., 1985, 49–76 | MR

[5] Pogorelov B. A., Pudovkina M. A., “Naturalnye metriki i ikh svoistva. Ch. 1. Podmetriki i nadmetriki”, Matematicheskie voprosy kriptografii, 2:4 (2011), 49–74