Polyhedral classes of $k$-valued logic functions with generalized filter taboo and semitaboo
Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 1, pp. 53-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the connections between the Boolean functions with generalized filter taboo (a pattern which cannot appear in the output sequence of a filter generator) and classes of $k$-valued logic functions constructed from these Boolean functions by means of extension method. It is shown that generalized filter taboo of a Boolean function may correspond to the generalized filter taboo of $k$-valued logic function as well as to its generalized filter semitaboo (a pattern in the output sequence of a $k$-valued filter generator which restricts the sets of possible values of some elements in the input sequence).
@article{MVK_2012_3_1_a1,
     author = {N. V. Nikonov},
     title = {Polyhedral classes of $k$-valued logic functions with generalized filter taboo and semitaboo},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {53--69},
     year = {2012},
     volume = {3},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2012_3_1_a1/}
}
TY  - JOUR
AU  - N. V. Nikonov
TI  - Polyhedral classes of $k$-valued logic functions with generalized filter taboo and semitaboo
JO  - Matematičeskie voprosy kriptografii
PY  - 2012
SP  - 53
EP  - 69
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2012_3_1_a1/
LA  - ru
ID  - MVK_2012_3_1_a1
ER  - 
%0 Journal Article
%A N. V. Nikonov
%T Polyhedral classes of $k$-valued logic functions with generalized filter taboo and semitaboo
%J Matematičeskie voprosy kriptografii
%D 2012
%P 53-69
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2012_3_1_a1/
%G ru
%F MVK_2012_3_1_a1
N. V. Nikonov. Polyhedral classes of $k$-valued logic functions with generalized filter taboo and semitaboo. Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 1, pp. 53-69. http://geodesic.mathdoc.fr/item/MVK_2012_3_1_a1/

[1] Pogorelov B. A., Sachkov V. N. (red.), Slovar kriptograficheskikh terminov, MTsNMO, M., 2006, 92 pp.

[2] Shnaier B., Prikladnaya kriptografiya. Protokoly, algoritmy, iskhodnye teksty na yazyke Si, Per. s angl., TRIUMF, M., 2003, 816 pp.

[3] Alferov A. P., Zubov A. Yu., Kuzmin A. S., Cheremushkin A. V., Osnovy kriptografii, Gelios ARV, M., 2001, 480 pp.

[4] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004, 472 pp.

[5] Golic J. D., “On the security of nonlinear filter generators”, FSE' 96, Lect. Notes Comput. Sci., 1039, 1996, 173–188 | DOI

[6] Sumarokov S. N., “Zaprety dvoichnykh funktsii i obratimost dlya odnogo klassa kodiruyuschikh ustroistv”, Obozrenie prikladnoi i promyshlennoi matematiki, 1:1 (1994), 33–55 | MR | Zbl

[7] Nikonov V. G., Nikonov N. V., “Zaprety $k$-znachnykh funktsii i ikh svyaz s problemoi razreshimosti sistem uravnenii spetsialnogo vida”, Vestnik RUDN, 2:1 (2003), 79–93

[8] Nikonov N. V., “Metod rastyazheniya v postroenii klassov ravnoveroyatnykh $k$-znachnykh funktsii s zapretom”, Obozrenie prikladnoi i promyshlennoi matematiki, 13:6 (2006), 961–974 | MR | Zbl

[9] Nikonov N. V., “O porogovykh metodakh dokazatelstva nalichiya zapretov bulevykh i $k$-znachnykh funktsii”, Obozrenie prikladnoi i promyshlennoi matematiki, 13:5 (2006), 874–875

[10] Nikonov V. G., Nikonov N. V., “Osobennosti porogovykh predstavlenii $k$-znachnykh funktsii”, Trudy po diskretnoi matematike, 11, no. 1, M., 2008, 60–85

[11] Nikonov N. V., “O klassifikatsii vsekh bulevykh funktsii ot 3-kh peremennykh s obobschennymi zapretami”, Vestnik MGUL “Lesnoi vestnik”, 2004, no. 5(36), 177–188

[12] Nikonov N. V., “Ob obobschennykh zapretakh i poluzapretakh funktsii $k$-znachnoi logiki”, Obozrenie prikladnoi i promyshlennoi matematiki, 14:3 (2007), 754–755

[13] Balakin G. V., Nikonov V. G., “Metody svedeniya bulevykh uravnenii k sistemam porogovykh sootnoshenii”, Obozrenie prikladnoi i promyshlennoi matematiki, 1:3 (1994), 389–401 | Zbl

[14] Nikonov V. G., “Porogovye predstavleniya bulevykh funktsii”, Obozrenie prikladnoi i promyshlennoi matematiki, 1:3 (1994), 402–457 | MR | Zbl