On primary functions which are minimally close to linear functions
Matematičeskie voprosy kriptografii, Tome 2 (2011), pp. 97-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The investigation of aspects of closeness to linear functions for functions from $(\mathbf Z/(p))^n$ to $(\mathbf Z/(p))^m$ ($p$ is prime number). New criteria of minimal closeness to linear functions are found. This property of a function is proved to be inherited for its homomorphic images. As a generalization of an analogous statement for Boolean functions it is proved that if $p=2$ or $3$ then a class of functions which are minimally close to linear ones coincides with the class of bent-functions (if bent-functions do exist).
@article{MVK_2011_2_a5,
     author = {V. I. Solodovnikov},
     title = {On primary functions which are minimally close to linear functions},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {97--108},
     publisher = {mathdoc},
     volume = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2011_2_a5/}
}
TY  - JOUR
AU  - V. I. Solodovnikov
TI  - On primary functions which are minimally close to linear functions
JO  - Matematičeskie voprosy kriptografii
PY  - 2011
SP  - 97
EP  - 108
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2011_2_a5/
LA  - ru
ID  - MVK_2011_2_a5
ER  - 
%0 Journal Article
%A V. I. Solodovnikov
%T On primary functions which are minimally close to linear functions
%J Matematičeskie voprosy kriptografii
%D 2011
%P 97-108
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2011_2_a5/
%G ru
%F MVK_2011_2_a5
V. I. Solodovnikov. On primary functions which are minimally close to linear functions. Matematičeskie voprosy kriptografii, Tome 2 (2011), pp. 97-108. http://geodesic.mathdoc.fr/item/MVK_2011_2_a5/

[1] Golomb S. W., “On the classification of Boolean functions”, IRE Trans. Circuit Theory, 1:6 (1959), 10–27

[2] Rothaus O. S., “On “bent” functions”, J. Comb. Theory Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[3] Ambrosimov A. S., “Svoistva bent-funktsii $q$-znachnoi logiki nad konechnymi polyami”, Diskretnaya matematika, 6:3 (1994), 50–60 | MR | Zbl

[4] Logachëv O. A., Salnikov A. A., Yaschenko V. V., “Bent-funktsii na konechnoi abelevoi gruppe”, Diskretnaya matematika, 9:4 (1997), 3–20 | MR | Zbl

[5] Solodovnikov V. I., “Bent-funktsii iz konechnoi abelevoi gruppy v konechnuyu abelevu gruppu”, Diskretnaya matematika, 14:1 (2002), 99–113 | MR | Zbl

[6] Kuzmin A. S., Nechaev A. A., Shishkin V. A., “Bent- i giperbent-funktsii nad konechnym polem”, Trudy po diskretnoi matematike, 10, Fizmatlit, M., 2007, 97–122

[7] Kuzmin A. S., Nechaev A. A., Shishkin V. A., “Parametry (giper-) bent-funktsii nad polem iz $2^l$ elementov”, Trudy po diskretnoi matematike, 11, no. 1, Fizmatlit, M., 2008, 47–59

[8] Kumar P. V., Scholts R. A., Welch L. R., “Generalized bent functions and their properties”, J. Comb. Theory Ser. A, 40:1 (1985), 90–107 | DOI | MR | Zbl

[9] Nyberg K., “Perfect nonlinear $S$-boxes”, Adv. in Cryptology – EURO-CRYPT' 91, Lect. Notes in Comput. Sci., 547, 1991, 378–386 | MR | Zbl

[10] Tokareva N. N., Nelineinye bulevy funktsii: bent-funktsii i ikh obobscheniya, LAP, Saarbrucken, 2011, 180 pp.