On primary functions which are minimally close to linear functions
Matematičeskie voprosy kriptografii, Tome 2 (2011), pp. 97-108

Voir la notice de l'article provenant de la source Math-Net.Ru

The investigation of aspects of closeness to linear functions for functions from $(\mathbf Z/(p))^n$ to $(\mathbf Z/(p))^m$ ($p$ is prime number). New criteria of minimal closeness to linear functions are found. This property of a function is proved to be inherited for its homomorphic images. As a generalization of an analogous statement for Boolean functions it is proved that if $p=2$ or $3$ then a class of functions which are minimally close to linear ones coincides with the class of bent-functions (if bent-functions do exist).
@article{MVK_2011_2_a5,
     author = {V. I. Solodovnikov},
     title = {On primary functions which are minimally close to linear functions},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {97--108},
     publisher = {mathdoc},
     volume = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2011_2_a5/}
}
TY  - JOUR
AU  - V. I. Solodovnikov
TI  - On primary functions which are minimally close to linear functions
JO  - Matematičeskie voprosy kriptografii
PY  - 2011
SP  - 97
EP  - 108
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2011_2_a5/
LA  - ru
ID  - MVK_2011_2_a5
ER  - 
%0 Journal Article
%A V. I. Solodovnikov
%T On primary functions which are minimally close to linear functions
%J Matematičeskie voprosy kriptografii
%D 2011
%P 97-108
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2011_2_a5/
%G ru
%F MVK_2011_2_a5
V. I. Solodovnikov. On primary functions which are minimally close to linear functions. Matematičeskie voprosy kriptografii, Tome 2 (2011), pp. 97-108. http://geodesic.mathdoc.fr/item/MVK_2011_2_a5/