Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MVK_2011_2_a0, author = {M. M. Gluhov}, title = {On a method of construction of orthogonal quasigroup systems by means of groups}, journal = {Matemati\v{c}eskie voprosy kriptografii}, pages = {5--24}, publisher = {mathdoc}, volume = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MVK_2011_2_a0/} }
M. M. Gluhov. On a method of construction of orthogonal quasigroup systems by means of groups. Matematičeskie voprosy kriptografii, Tome 2 (2011), pp. 5-24. http://geodesic.mathdoc.fr/item/MVK_2011_2_a0/
[1] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR | Zbl
[2] Belousov V. D., Algebraicheskie seti i kvazigruppy, Shtiintsa, Kishinev, 1971
[3] Belousov V. D., “Sistemy ortogonalnykh operatsii”, Matem. sb., 77(119):1 (1968), 38–58 | MR | Zbl
[4] Glukhov M. M., Larin S. V., “Abelevy i metabelevy gruppy s regulyarnymi avtomorfizmami i poluavtomorfizmami”, Matem. zametki, 12:6 (1972), 727–738 | Zbl
[5] Kargopolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1972 | MR
[6] Sachkov V. N., Kombinatornye metody diskretnoi matematiki, Nauka, M., 1977
[7] Kholl M., Kombinatorika, Mir, M., 1970 | MR
[8] Belyavskaya G. B., “Quasigroup power sets and cyclic $S$-systems”, Quasigroups and related Systems, 9 (2002), 1–17 | MR | Zbl
[9] Bose R. C., “On application of the properties of Galois fields to the problem of construction of hyper-Graeco-Latin squares”, Sankhya, 3 (1938), 323–338
[10] Bose R. C., Nair K. R., “On complete sets of orthogonal Latin squares”, Sankhya, 5 (1941), 361–382 | MR | Zbl
[11] Bose R. C., Shrikhande S. S., Parker E. T., “Further results on the constructions of mutually orthogonal Latin squares and the falsity Euler`s conjecture”, Canad. J. Math., 12 (1960), 189–203 | DOI | MR | Zbl
[12] Brack R. H., “Finite nets, I”, Canad. J. Math., 3 (1951), 94–107 | DOI | MR
[13] Brack R. H., A survey of binary systems, Springer-Verlag, Berlin–Heidelberg–Gottingen, 1958 | MR
[14] Denes J., Keedwell A. D., Latin Squares. New Developments in the Theory and Applications, Nord-Holland Publishing Co., Amsterdam, 1981 | MR
[15] Denes J., Mullen G. L., Suchower S. J., “A note on power sets of Latin squares”, J. Combin. Computing, 16 (1994), 27–31 | MR | Zbl
[16] Denes J., “When is there a Latin power set?”, Amer. Math. Monthly, 104 (1997), 563–565 | DOI | MR
[17] Denes J., Owens P. J., “Some new power sets not based on groups”, J. Combin. Theory Ser. A, 85 (1999), 69–82 | DOI | MR | Zbl
[18] Denes J., Petroczki P., A digital encrypting communication systems, Hungarian Patent No 201437A, 1990
[19] Gorenstein D., Finite groups, Harper and Row, New York–Evanston–London, 1968 | MR | Zbl
[20] Huppert B., Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl
[21] Johnson D. M., Dulmage A. L., Mendelson N. S., “Orthomorphisms of groups and orthogon Latin squares, I”, Canad. J. Math., 13 (1961), 356–372 | DOI | MR | Zbl
[22] Keedwell A. D., “On $R$-sequenceability and $R_h$-sequenceability of groups”, Combinatorics' 81, Ann. Discrete Math., 78, North-Holland, 1983, 535–548 | MR
[23] Koksma K. K., “Lower bound for the order of a partial transversal in a Latin square”, J. Combinatorial Theory, 7 (1969), 94–95 | DOI | MR | Zbl
[24] Laywine C. F., Mullen G. L., Discrete mathematics using Latin squares, John Wiley and Sons, Inc., New York, 1998 | MR
[25] Leakh I. V., On transformations of orthogonal systems of optrations and algebraic nets, Ph. D. thesis, IM AN RM, Kishinev, 1986
[26] MacNeish H. F., “Euler squares”, Ann. Math., 23 (1921), 221–227 | DOI | MR
[27] Mann H. B., “The construction orthogonal Latin squares”, Ann. Math. Statist., 13 (1942), 418–423 | DOI | MR | Zbl
[28] Norton D. A., “Group of orthogonal row-latin squares”, Pacific J. Math., 2 (1952), 335–341 | MR | Zbl
[29] Paige L. J., “Complete mappings of finite groups”, Pacific J. Math., 1 (1951), 111–116 | MR | Zbl
[30] Paige L. J., Hall M., “Complete mappings of finite groups”, Pacific J. Math., 5 (1955), 541–549 | MR | Zbl
[31] Parker E. T., “Construction of some sets of pairwise orthogonal Latin squares”, Proc. Amer. Math. Soc., 10 (1959), 949–951 | DOI | MR
[32] Parker E. T., “Orthogonal Latin squares”, Proc. Natural Academ. Sci. USA, 45 (1959), 859–962 | DOI | MR
[33] Stevens W., “The Completely orthogonalized Latin squares”, Ann. Eugen., 9 (1939), 269–307 | DOI | MR
[34] Wanless I. M., “Transversals in Latin squares”, Quasigroups and related systems, 15:1 (2007), 169–190 | MR | Zbl