Poisson type theorems for the number of solutions of random inclusions
Matematičeskie voprosy kriptografii, Tome 1 (2010), pp. 63-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F$ be a random mapping of $n$-dimensional space $V^n$ over the finite field $GF(q)$ into $T$-dimensional space $V^T$ over the same field, and $D\subset V^n$, $B\subset V^T$. For systems of inclusions $x\in D$, $F(x)\in B$ sufficient conditions for the weak convergence of the number of solutions to the Poisson type laws as $n,T\to\infty$ are obtained.
@article{MVK_2010_1_a3,
     author = {V. A. Kopyttsev and V. G. Mikhailov},
     title = {Poisson type theorems for the number of solutions of random inclusions},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {63--84},
     publisher = {mathdoc},
     volume = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2010_1_a3/}
}
TY  - JOUR
AU  - V. A. Kopyttsev
AU  - V. G. Mikhailov
TI  - Poisson type theorems for the number of solutions of random inclusions
JO  - Matematičeskie voprosy kriptografii
PY  - 2010
SP  - 63
EP  - 84
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2010_1_a3/
LA  - ru
ID  - MVK_2010_1_a3
ER  - 
%0 Journal Article
%A V. A. Kopyttsev
%A V. G. Mikhailov
%T Poisson type theorems for the number of solutions of random inclusions
%J Matematičeskie voprosy kriptografii
%D 2010
%P 63-84
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2010_1_a3/
%G ru
%F MVK_2010_1_a3
V. A. Kopyttsev; V. G. Mikhailov. Poisson type theorems for the number of solutions of random inclusions. Matematičeskie voprosy kriptografii, Tome 1 (2010), pp. 63-84. http://geodesic.mathdoc.fr/item/MVK_2010_1_a3/

[1] Kopyttsev V. A., Mikhailov V. G., “Teoremy puassonovskogo tipa dlya chisla spetsialnykh reshenii sluchainogo lineinogo vklyucheniya”, Diskretnaya matematika, 22:2 (2010), 3–21 | MR

[2] Kopyttsev V. A., “O chisle reshenii sistem lineinykh bulevykh uravnenii v mnozhestve vektorov, obladayuschikh zadannym chislom edinits”, Diskretnaya matematika, 14:4 (2002), 87–109 | MR | Zbl

[3] Kopyttsev V. A., “O chisle reshenii sistemy sluchainykh lineinykh uravnenii”, Diskretnaya matematika, 18:1 (2006), 40–62 | MR | Zbl

[4] Mikhailov V. G., “Predelnye teoremy dlya chisla reshenii sistemy sluchainykh lineinykh uravnenii, popavshikh v zadannoe mnozhestvo”, Diskretnaya matematika, 19:1 (2007), 17–26 | Zbl

[5] Mikhailov V. G., “O predelnoi teoreme B. A. Sevastyanova dlya summ zavisimykh sluchainykh indikatorov”, Obozrenie prikl. i promyshl. matematiki, 10:3 (2003), 571–578

[6] Masol V. I., “Teorema o predelnom raspredelenii chisla lozhnykh reshenii sistemy nelineinykh sluchainykh bulevykh uravnenii”, Teoriya veroyatnostei i ee primeneniya, 43:1 (1998), 41–56 | MR | Zbl

[7] Masol V., Slobodian M., “Estimation of the rate convergence to the limit distribution of the number of false solution of the system of nonlinear random Boolean equations that has a linear part”, Theory Stoch. Process., 13(29):1–2 (2007), 132–143 | MR | Zbl