Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MVK_2010_1_a2, author = {O. V. Kamlovskii}, title = {Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over $\mathbb{Z}_{2^n}$}, journal = {Matemati\v{c}eskie voprosy kriptografii}, pages = {33--62}, publisher = {mathdoc}, volume = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MVK_2010_1_a2/} }
TY - JOUR AU - O. V. Kamlovskii TI - Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over $\mathbb{Z}_{2^n}$ JO - Matematičeskie voprosy kriptografii PY - 2010 SP - 33 EP - 62 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MVK_2010_1_a2/ LA - ru ID - MVK_2010_1_a2 ER -
%0 Journal Article %A O. V. Kamlovskii %T Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over $\mathbb{Z}_{2^n}$ %J Matematičeskie voprosy kriptografii %D 2010 %P 33-62 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MVK_2010_1_a2/ %G ru %F MVK_2010_1_a2
O. V. Kamlovskii. Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over $\mathbb{Z}_{2^n}$. Matematičeskie voprosy kriptografii, Tome 1 (2010), pp. 33-62. http://geodesic.mathdoc.fr/item/MVK_2010_1_a2/