Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over $\mathbb{Z}_{2^n}$
Matematičeskie voprosy kriptografii, Tome 1 (2010), pp. 33-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

By means of exponential sums method we investigate distributions of $r$-patterns in the most significant bit of linear recurrent sequences over $\mathbb{Z}_{2^n}$ such that their characteristic polynomials reduced to mod $2$ are irreducible over $GF(2)$.
@article{MVK_2010_1_a2,
     author = {O. V. Kamlovskii},
     title = {Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over  $\mathbb{Z}_{2^n}$},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {33--62},
     publisher = {mathdoc},
     volume = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2010_1_a2/}
}
TY  - JOUR
AU  - O. V. Kamlovskii
TI  - Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over  $\mathbb{Z}_{2^n}$
JO  - Matematičeskie voprosy kriptografii
PY  - 2010
SP  - 33
EP  - 62
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2010_1_a2/
LA  - ru
ID  - MVK_2010_1_a2
ER  - 
%0 Journal Article
%A O. V. Kamlovskii
%T Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over  $\mathbb{Z}_{2^n}$
%J Matematičeskie voprosy kriptografii
%D 2010
%P 33-62
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2010_1_a2/
%G ru
%F MVK_2010_1_a2
O. V. Kamlovskii. Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over  $\mathbb{Z}_{2^n}$. Matematičeskie voprosy kriptografii, Tome 1 (2010), pp. 33-62. http://geodesic.mathdoc.fr/item/MVK_2010_1_a2/

[1] Kuzmin A. S., Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad koltsami Galua”, Algebra i logika, 34:2 (1995), 169–189 | MR

[2] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, 1997, 139–202 | MR

[3] Kuzmin A. S., Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad koltsami Galua”, Uspekhi matem. nauk, 48:1 (1993), 167–168 | MR

[4] Kurakin V. L., “Pervaya koordinatnaya posledovatelnost lineinoi rekurrenty maksimalnogo perioda nad koltsom Galua”, Diskretnaya matematika, 6:2 (1994), 88–100 | MR | Zbl

[5] Kuzmin A. S., “Raspredelenie elementov na tsiklakh lineinykh rekurrent nad koltsami vychetov”, Uspekhi matem. nauk, 47:6 (1992), 213–214 | MR

[6] Kamlovskii O. V., “Chastotnye kharakteristiki lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Matem. sbornik, 200:4 (2009), 31–52 | MR

[7] Lathtonen L., Ling S., Sole P., Zinoviev D., “$\mathbb{Z}_8$-Kerdock codes and pseudorandom binary sequences”, J. Complexity, 20:8 (2004), 318–330 | DOI | MR

[8] Sole P., Zinoviev D., “The most significant bit of maximum-length sequences over $\mathbb Z_{2^l}$: autocorrelation and imbalance”, IEEE Trans. Inf. Theory, 50:8 (2004), 1844–1846 | DOI | MR

[9] Sole P., Zinoviev D., “Distribution of $r$-patterns in the most significant bit of a maximum length sequence over $\mathbb Z_{2^l}$”, Lect. Notes Comp. Sci., 3486, 2005, 275–281 | Zbl

[10] Fan S., Han W., “Random properties of the highest level sequences of primitive sequences over $\mathbb Z_{2^e}$”, IEEE Trans. Inf. Theory, 49:6 (2003), 1553–1557 | DOI | MR | Zbl

[11] Dai Z.-D., Ye D., Wang P., Fang G., “Distribution of $r$-patterns in the highest level of $p$-adic sequences over Galois rings”, Proc. Golomb symp. (USC, 2002)

[12] Hu H., Feng D., Wu W., “Incomplete exponential sums over Galois rings with applications to some binary sequences derived from $\mathbb Z_{2^l}$”, IEEE Trans. Inf. Theory, 52:5 (2006), 2260–2265 | DOI | MR

[13] Kuzmin A. S., Nechaev A. A., “Complete weight enumerators of generalized Kerdock code and related linear codes over Galois ring”, Discr. Appl. Math., 111 (2001), 117–137 | DOI | MR | Zbl

[14] Morgan M. D., “The distribution of second order linear recurrence sequences mod $2^m$”, Acta Arith., 83:2 (1998), 181–195 | MR | Zbl

[15] Qi W., Zhou J., “Distribution of $0$ and $1$ in the highest level of primitive sequences over $\mathbb Z_{2^e}$”, Science in China (Series A), 40:6 (1997), 606–611 | DOI | MR | Zbl

[16] Ambrosimov A. S., “O raspredelenii multigramm v lineinykh rekurrentnykh posledovatelnostyakh nad koltsom vychetov”, Uspekhi matem. nauk, 48:5 (1993), 157–158 | MR | Zbl

[17] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Nauka, M., 1966, 800 pp.

[18] Boztas S., Hammous R., Kumar P. V., “$4$-phase sequences with near-optimum correlation properties”, IEEE Trans. Inform. Theory, 38:3 (1992), 1101–1113 | DOI | Zbl

[19] Sarwate D. V., “An upper bound on the aperiodic autocorrelation function for a maximal-length sequence”, IEEE Trans. Inform. Theory, 30 (1984), 685–687 | DOI | MR | Zbl