Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over $\mathbb{Z}_{2^n}$
Matematičeskie voprosy kriptografii, Tome 1 (2010), pp. 33-62

Voir la notice de l'article provenant de la source Math-Net.Ru

By means of exponential sums method we investigate distributions of $r$-patterns in the most significant bit of linear recurrent sequences over $\mathbb{Z}_{2^n}$ such that their characteristic polynomials reduced to mod $2$ are irreducible over $GF(2)$.
@article{MVK_2010_1_a2,
     author = {O. V. Kamlovskii},
     title = {Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over  $\mathbb{Z}_{2^n}$},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {33--62},
     publisher = {mathdoc},
     volume = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2010_1_a2/}
}
TY  - JOUR
AU  - O. V. Kamlovskii
TI  - Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over  $\mathbb{Z}_{2^n}$
JO  - Matematičeskie voprosy kriptografii
PY  - 2010
SP  - 33
EP  - 62
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2010_1_a2/
LA  - ru
ID  - MVK_2010_1_a2
ER  - 
%0 Journal Article
%A O. V. Kamlovskii
%T Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over  $\mathbb{Z}_{2^n}$
%J Matematičeskie voprosy kriptografii
%D 2010
%P 33-62
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2010_1_a2/
%G ru
%F MVK_2010_1_a2
O. V. Kamlovskii. Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over  $\mathbb{Z}_{2^n}$. Matematičeskie voprosy kriptografii, Tome 1 (2010), pp. 33-62. http://geodesic.mathdoc.fr/item/MVK_2010_1_a2/