Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MVK_2010_1_a2, author = {O. V. Kamlovskii}, title = {Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over $\mathbb{Z}_{2^n}$}, journal = {Matemati\v{c}eskie voprosy kriptografii}, pages = {33--62}, publisher = {mathdoc}, volume = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MVK_2010_1_a2/} }
TY - JOUR AU - O. V. Kamlovskii TI - Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over $\mathbb{Z}_{2^n}$ JO - Matematičeskie voprosy kriptografii PY - 2010 SP - 33 EP - 62 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MVK_2010_1_a2/ LA - ru ID - MVK_2010_1_a2 ER -
%0 Journal Article %A O. V. Kamlovskii %T Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over $\mathbb{Z}_{2^n}$ %J Matematičeskie voprosy kriptografii %D 2010 %P 33-62 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MVK_2010_1_a2/ %G ru %F MVK_2010_1_a2
O. V. Kamlovskii. Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over $\mathbb{Z}_{2^n}$. Matematičeskie voprosy kriptografii, Tome 1 (2010), pp. 33-62. http://geodesic.mathdoc.fr/item/MVK_2010_1_a2/
[1] Kuzmin A. S., Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad koltsami Galua”, Algebra i logika, 34:2 (1995), 169–189 | MR
[2] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, 1997, 139–202 | MR
[3] Kuzmin A. S., Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad koltsami Galua”, Uspekhi matem. nauk, 48:1 (1993), 167–168 | MR
[4] Kurakin V. L., “Pervaya koordinatnaya posledovatelnost lineinoi rekurrenty maksimalnogo perioda nad koltsom Galua”, Diskretnaya matematika, 6:2 (1994), 88–100 | MR | Zbl
[5] Kuzmin A. S., “Raspredelenie elementov na tsiklakh lineinykh rekurrent nad koltsami vychetov”, Uspekhi matem. nauk, 47:6 (1992), 213–214 | MR
[6] Kamlovskii O. V., “Chastotnye kharakteristiki lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Matem. sbornik, 200:4 (2009), 31–52 | MR
[7] Lathtonen L., Ling S., Sole P., Zinoviev D., “$\mathbb{Z}_8$-Kerdock codes and pseudorandom binary sequences”, J. Complexity, 20:8 (2004), 318–330 | DOI | MR
[8] Sole P., Zinoviev D., “The most significant bit of maximum-length sequences over $\mathbb Z_{2^l}$: autocorrelation and imbalance”, IEEE Trans. Inf. Theory, 50:8 (2004), 1844–1846 | DOI | MR
[9] Sole P., Zinoviev D., “Distribution of $r$-patterns in the most significant bit of a maximum length sequence over $\mathbb Z_{2^l}$”, Lect. Notes Comp. Sci., 3486, 2005, 275–281 | Zbl
[10] Fan S., Han W., “Random properties of the highest level sequences of primitive sequences over $\mathbb Z_{2^e}$”, IEEE Trans. Inf. Theory, 49:6 (2003), 1553–1557 | DOI | MR | Zbl
[11] Dai Z.-D., Ye D., Wang P., Fang G., “Distribution of $r$-patterns in the highest level of $p$-adic sequences over Galois rings”, Proc. Golomb symp. (USC, 2002)
[12] Hu H., Feng D., Wu W., “Incomplete exponential sums over Galois rings with applications to some binary sequences derived from $\mathbb Z_{2^l}$”, IEEE Trans. Inf. Theory, 52:5 (2006), 2260–2265 | DOI | MR
[13] Kuzmin A. S., Nechaev A. A., “Complete weight enumerators of generalized Kerdock code and related linear codes over Galois ring”, Discr. Appl. Math., 111 (2001), 117–137 | DOI | MR | Zbl
[14] Morgan M. D., “The distribution of second order linear recurrence sequences mod $2^m$”, Acta Arith., 83:2 (1998), 181–195 | MR | Zbl
[15] Qi W., Zhou J., “Distribution of $0$ and $1$ in the highest level of primitive sequences over $\mathbb Z_{2^e}$”, Science in China (Series A), 40:6 (1997), 606–611 | DOI | MR | Zbl
[16] Ambrosimov A. S., “O raspredelenii multigramm v lineinykh rekurrentnykh posledovatelnostyakh nad koltsom vychetov”, Uspekhi matem. nauk, 48:5 (1993), 157–158 | MR | Zbl
[17] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Nauka, M., 1966, 800 pp.
[18] Boztas S., Hammous R., Kumar P. V., “$4$-phase sequences with near-optimum correlation properties”, IEEE Trans. Inform. Theory, 38:3 (1992), 1101–1113 | DOI | Zbl
[19] Sarwate D. V., “An upper bound on the aperiodic autocorrelation function for a maximal-length sequence”, IEEE Trans. Inform. Theory, 30 (1984), 685–687 | DOI | MR | Zbl