A~construction of algebraic cryptosystem over the quasigroup ring
Matematičeskie voprosy kriptografii, Tome 1 (2010), pp. 23-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nowadays the most popular public key cryptosystems are RSA, the ElGamal cryptosystem and encryption schemes based on the Diffie-Hellman problem. We construct a similar cryptosystem by means of a non-associative structure, namely, quasigroup ring. Some modifications increasing the security of this scheme against possible attacks are described. Several concrete non-associative algebraic structures acceptable for cryptosystem constructions were considered and analyzed also.
@article{MVK_2010_1_a1,
     author = {A. B. Gribov and P. A. Zolotykh and A. V. Mikhalev},
     title = {A~construction of algebraic cryptosystem over the quasigroup ring},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {23--32},
     publisher = {mathdoc},
     volume = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2010_1_a1/}
}
TY  - JOUR
AU  - A. B. Gribov
AU  - P. A. Zolotykh
AU  - A. V. Mikhalev
TI  - A~construction of algebraic cryptosystem over the quasigroup ring
JO  - Matematičeskie voprosy kriptografii
PY  - 2010
SP  - 23
EP  - 32
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2010_1_a1/
LA  - ru
ID  - MVK_2010_1_a1
ER  - 
%0 Journal Article
%A A. B. Gribov
%A P. A. Zolotykh
%A A. V. Mikhalev
%T A~construction of algebraic cryptosystem over the quasigroup ring
%J Matematičeskie voprosy kriptografii
%D 2010
%P 23-32
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2010_1_a1/
%G ru
%F MVK_2010_1_a1
A. B. Gribov; P. A. Zolotykh; A. V. Mikhalev. A~construction of algebraic cryptosystem over the quasigroup ring. Matematičeskie voprosy kriptografii, Tome 1 (2010), pp. 23-32. http://geodesic.mathdoc.fr/item/MVK_2010_1_a1/

[1] Rososhek S. K., “Kriptosistemy gruppovykh kolets”, Vestnik Tomskogo gos. un-ta, 2003, no. 6, 57–62

[2] Lambek I., Koltsa i moduli, Faktorial Press, M., 2005, 283 pp.

[3] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967, 223 pp. | MR | Zbl

[4] Smith J. D. H., Representation Theory of Infinite Groups and Finite Quasigroups, Univ. Montreal, Montreal, 1986 | MR | Zbl

[5] The GAP Group, GAP — Groups, Algorithms and Programming. Ver. 4.4.9, , 2006 http://www.gap-system.org

[6] Vojtechovsky P., Loops — a GAP package. Version 1.4.0, , 2007 ftp://ftp.gap-system.org/ pub/gap/gap4/win.zip/packages/loops-1.4.0-win.zip

[7] Goodaire E. G., “Advances in loop rings and their loops”, Quasigroups and relat. syst., 15:1 (2007), 1–18 | MR | Zbl