An analysis of some key distribution public systems based on non-abelian groups
Matematičeskie voprosy kriptografii, Tome 1 (2010), pp. 5-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some cryptosystems for public distribution of keys based on the composition of the conjugacy and discrete logarithm problems for non-abelian (non-commutative) groups constructed on $(\mathbf Z_p)^4$. It is proved that for these schemes the upper bound of complexity of breaking the secret key does not exceed (in the order) the complexity of discrete logarithm problem for cyclic subgroup of the multiplicative group of the field $(\mathbf Z_p)$ or its quadratic extension.
@article{MVK_2010_1_a0,
     author = {M. M. Glukhov},
     title = {An analysis of some key distribution public systems based on non-abelian groups},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {5--22},
     publisher = {mathdoc},
     volume = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2010_1_a0/}
}
TY  - JOUR
AU  - M. M. Glukhov
TI  - An analysis of some key distribution public systems based on non-abelian groups
JO  - Matematičeskie voprosy kriptografii
PY  - 2010
SP  - 5
EP  - 22
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2010_1_a0/
LA  - ru
ID  - MVK_2010_1_a0
ER  - 
%0 Journal Article
%A M. M. Glukhov
%T An analysis of some key distribution public systems based on non-abelian groups
%J Matematičeskie voprosy kriptografii
%D 2010
%P 5-22
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2010_1_a0/
%G ru
%F MVK_2010_1_a0
M. M. Glukhov. An analysis of some key distribution public systems based on non-abelian groups. Matematičeskie voprosy kriptografii, Tome 1 (2010), pp. 5-22. http://geodesic.mathdoc.fr/item/MVK_2010_1_a0/

[1] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. II, Gelios ARV, M., 2003

[2] Sidelnikov V. M., Cherepnev M. A., Yaschenko V. V., “Sistemy otkrytogo raspredeleniya klyuchei na osnove nekommutativnykh polugrupp”, Dokl. RAN, 332:5 (1993), 566–567

[3] Sidelnikov V. M., “Sistemy raspredeleniya klyuchei na osnove “ekspo- nentsialnogo predstavleniya” lineinoi gruppy $GL_n(F_p)$”, Problemy peredachi informatsii, 30:4 (1994), 25–32 | MR

[4] Moldovyan N. A., Teoreticheskii minimum i algoritmy tsifrovoi podpisi, BKhV-Peterburg, 2010

[5] Moldovyan D. N., Kupriyanov A. I., Kostina A. A., Zakharov D. V., “Zadanie nekommutativnykh konechnykh grupp vektorov dlya sinteza algoritmov tsifrovoi podpisi”, Voprosy zaschity informatsii, 2009, no. 4, 12–18

[6] Anshel I., Anshel M., Goldfeld D., “An algebraic method for public key cryptography”, Math. Res. Lett., 6 (1999), 287–291 | MR | Zbl

[7] Koo K. H., Lee S. J., Cheon J. H., Han J. W., Kang J., Park C., “New publickey cryptosystem using braid groups”, CRYPTO'2000, Lect. Notes Comput. Sci., 1880, 2000, 166–183

[8] Moldovyan N. A., Moldovyanu P. A., “New primitives for digital signature algorithms: vector finite fields”, Quasigroups and related systems, 17 (2009), 271–282 | MR | Zbl

[9] Moldovyan D. N., Moldovyan N. A., “A new hard problem over noncommutative finite groups for cryptographic protocols”, MMM-ACNS, 2010, 183–194

[10] Paeng S. H., Ha K. C., Kim J. H., Chee S., Park C., “New public key cryptosystem using finite non abelian groups”, CRYPTO'2001, Lect. Notes Comput. Sci., 2139, 2001, 470–485 | MR | Zbl

[11] Paeng S. H., Kwon D., Ha K. C., Kim J. H., Improved public key cryptosystem using finite non abelian groups, http://eprint.iacr.org/2001/066

[12] Sakalauskas E., Tvarijonas P., Raulynaitis A., “Key agreement protocol (KAP) using conjugacy and discrete logarithms problems in group representation level”, Informatica, 18:1 (2007), 115–124 | MR | Zbl

[13] Shor Q. W., “Polynomial-time algorithm for prime factorization and discrete logarithms on quantum computer”, SIAM J. Comput., 26 (1997), 1484–1509 | DOI | MR | Zbl

[14] Tobias C., “Security analysis of MOR using $GL(2,R)\times_{Theta}Z_n$”, 2nd Int. Workshop Secur. Inform. Syst., WOSIS 2004, 170–179

[15] Tobias C., Design und Analyse kryptografischer Bausteine auf nicht-abelschen Gruppen, Diss. Dokt. Naturwiss., Giessen, 2004, 128 pp. | MR

[16] Yamamura A., “Public key cryptosystems using the modular group”, PKC, Lect. Notes Comput. Sci., 1431, 1998, 203–216 | MR | Zbl

[17] Yamamura A., “A functional cryptosystems using a group action”, ACISP, Lect. Notes Comput. Sci., 1587, 1999, 314–325 | Zbl