Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MVK_2010_1_a0, author = {M. M. Glukhov}, title = {An analysis of some key distribution public systems based on non-abelian groups}, journal = {Matemati\v{c}eskie voprosy kriptografii}, pages = {5--22}, publisher = {mathdoc}, volume = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MVK_2010_1_a0/} }
M. M. Glukhov. An analysis of some key distribution public systems based on non-abelian groups. Matematičeskie voprosy kriptografii, Tome 1 (2010), pp. 5-22. http://geodesic.mathdoc.fr/item/MVK_2010_1_a0/
[1] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. II, Gelios ARV, M., 2003
[2] Sidelnikov V. M., Cherepnev M. A., Yaschenko V. V., “Sistemy otkrytogo raspredeleniya klyuchei na osnove nekommutativnykh polugrupp”, Dokl. RAN, 332:5 (1993), 566–567
[3] Sidelnikov V. M., “Sistemy raspredeleniya klyuchei na osnove “ekspo- nentsialnogo predstavleniya” lineinoi gruppy $GL_n(F_p)$”, Problemy peredachi informatsii, 30:4 (1994), 25–32 | MR
[4] Moldovyan N. A., Teoreticheskii minimum i algoritmy tsifrovoi podpisi, BKhV-Peterburg, 2010
[5] Moldovyan D. N., Kupriyanov A. I., Kostina A. A., Zakharov D. V., “Zadanie nekommutativnykh konechnykh grupp vektorov dlya sinteza algoritmov tsifrovoi podpisi”, Voprosy zaschity informatsii, 2009, no. 4, 12–18
[6] Anshel I., Anshel M., Goldfeld D., “An algebraic method for public key cryptography”, Math. Res. Lett., 6 (1999), 287–291 | MR | Zbl
[7] Koo K. H., Lee S. J., Cheon J. H., Han J. W., Kang J., Park C., “New publickey cryptosystem using braid groups”, CRYPTO'2000, Lect. Notes Comput. Sci., 1880, 2000, 166–183
[8] Moldovyan N. A., Moldovyanu P. A., “New primitives for digital signature algorithms: vector finite fields”, Quasigroups and related systems, 17 (2009), 271–282 | MR | Zbl
[9] Moldovyan D. N., Moldovyan N. A., “A new hard problem over noncommutative finite groups for cryptographic protocols”, MMM-ACNS, 2010, 183–194
[10] Paeng S. H., Ha K. C., Kim J. H., Chee S., Park C., “New public key cryptosystem using finite non abelian groups”, CRYPTO'2001, Lect. Notes Comput. Sci., 2139, 2001, 470–485 | MR | Zbl
[11] Paeng S. H., Kwon D., Ha K. C., Kim J. H., Improved public key cryptosystem using finite non abelian groups, http://eprint.iacr.org/2001/066
[12] Sakalauskas E., Tvarijonas P., Raulynaitis A., “Key agreement protocol (KAP) using conjugacy and discrete logarithms problems in group representation level”, Informatica, 18:1 (2007), 115–124 | MR | Zbl
[13] Shor Q. W., “Polynomial-time algorithm for prime factorization and discrete logarithms on quantum computer”, SIAM J. Comput., 26 (1997), 1484–1509 | DOI | MR | Zbl
[14] Tobias C., “Security analysis of MOR using $GL(2,R)\times_{Theta}Z_n$”, 2nd Int. Workshop Secur. Inform. Syst., WOSIS 2004, 170–179
[15] Tobias C., Design und Analyse kryptografischer Bausteine auf nicht-abelschen Gruppen, Diss. Dokt. Naturwiss., Giessen, 2004, 128 pp. | MR
[16] Yamamura A., “Public key cryptosystems using the modular group”, PKC, Lect. Notes Comput. Sci., 1431, 1998, 203–216 | MR | Zbl
[17] Yamamura A., “A functional cryptosystems using a group action”, ACISP, Lect. Notes Comput. Sci., 1587, 1999, 314–325 | Zbl