An analysis of some key distribution public systems based on non-abelian groups
Matematičeskie voprosy kriptografii, Tome 1 (2010), pp. 5-22

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some cryptosystems for public distribution of keys based on the composition of the conjugacy and discrete logarithm problems for non-abelian (non-commutative) groups constructed on $(\mathbf Z_p)^4$. It is proved that for these schemes the upper bound of complexity of breaking the secret key does not exceed (in the order) the complexity of discrete logarithm problem for cyclic subgroup of the multiplicative group of the field $(\mathbf Z_p)$ or its quadratic extension.
@article{MVK_2010_1_a0,
     author = {M. M. Glukhov},
     title = {An analysis of some key distribution public systems based on non-abelian groups},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {5--22},
     publisher = {mathdoc},
     volume = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2010_1_a0/}
}
TY  - JOUR
AU  - M. M. Glukhov
TI  - An analysis of some key distribution public systems based on non-abelian groups
JO  - Matematičeskie voprosy kriptografii
PY  - 2010
SP  - 5
EP  - 22
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MVK_2010_1_a0/
LA  - ru
ID  - MVK_2010_1_a0
ER  - 
%0 Journal Article
%A M. M. Glukhov
%T An analysis of some key distribution public systems based on non-abelian groups
%J Matematičeskie voprosy kriptografii
%D 2010
%P 5-22
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MVK_2010_1_a0/
%G ru
%F MVK_2010_1_a0
M. M. Glukhov. An analysis of some key distribution public systems based on non-abelian groups. Matematičeskie voprosy kriptografii, Tome 1 (2010), pp. 5-22. http://geodesic.mathdoc.fr/item/MVK_2010_1_a0/