Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2023_26_2_a7, author = {A. V. Lakeev and Yu. E. Linke and V. A. Rusanov}, title = {Rayleigh--Ritz operator in inverse problems for higher order multilinear nonautonomous evolution equations}, journal = {Matemati\v{c}eskie trudy}, pages = {162--176}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2023_26_2_a7/} }
TY - JOUR AU - A. V. Lakeev AU - Yu. E. Linke AU - V. A. Rusanov TI - Rayleigh--Ritz operator in inverse problems for higher order multilinear nonautonomous evolution equations JO - Matematičeskie trudy PY - 2023 SP - 162 EP - 176 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2023_26_2_a7/ LA - ru ID - MT_2023_26_2_a7 ER -
%0 Journal Article %A A. V. Lakeev %A Yu. E. Linke %A V. A. Rusanov %T Rayleigh--Ritz operator in inverse problems for higher order multilinear nonautonomous evolution equations %J Matematičeskie trudy %D 2023 %P 162-176 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2023_26_2_a7/ %G ru %F MT_2023_26_2_a7
A. V. Lakeev; Yu. E. Linke; V. A. Rusanov. Rayleigh--Ritz operator in inverse problems for higher order multilinear nonautonomous evolution equations. Matematičeskie trudy, Tome 26 (2023) no. 2, pp. 162-176. http://geodesic.mathdoc.fr/item/MT_2023_26_2_a7/
[1] A. Van der Shaft, “K teorii realizatsii nelineinykh sistem, opisyvaemykh differentsialnymi uravneniyami vysshego poryadka”, Teoriya sistem. Matematicheskie metody i modelirovanie, Per. s angl. sb. statei, eds. A. N. Kolmogorov, S. P. Novikov, Mir, M., 1989, 192–237
[2] A. B. Daneev, V. A. Rusanov, “K probleme postroeniya silnykh differentsialnykh modelei s minimalnoi operatornoi normoi. I, II”, Kibernetika i sistemnyi analiz, 2004, no. 1, 144–153 ; No 2, 170–178 | MR | Zbl | MR | Zbl
[3] A. V. Daneev, A. E. Kumenko, V. A. Rusanov, “Zadacha spektralnoi identifikatsii matematicheskoi modeli lineinoi dinamicheskoi sistemy upravleniya LA”, Izv. vuzov. Aviatsionnaya tekhnika, 1999, no. 1, 20–24 | MR
[4] A. B. Dmitriev, E. I. Druzhinin, “Identifikatsiya dinamicheskikh kharakteristik nepreryvnykh lineinykh modelei v usloviyakh polnoi parametricheskoi neopredelennosti”, Izv. RAN. Teoriya i sistemy upravleniya, 1999, no. 3, 44–52 | Zbl
[5] E. I. Druzhinin, “Postroenie strukturno ustoichivykh modelei dinamiki bolshikh kosmicheskikh konstruktsii po dannym letnykh ispytanii”, Dok. RAN, 479:3 (2017), 285–288 | DOI
[6] S. I. Kabanikhin, Obratnye i nekorrektnye zadachi, Sib. nauch. izd-vo, Novosibirsk, 2009, 458 pp.
[7] R. Kalman, P. Falb, M. Arbib, Ocherki po matematicheskoi teorii sistem, Mir, M., 1971, 400 pp. | MR
[8] A. V. Lakeev, Yu. E. Lipke, V. A. Rusanov, “K realizatsii polilineinogo regulyatora differentsialnoi sistemy vtorogo poryadka v gilbertovom prostranstve”, Differents. uravneniya, 53:8 (2017), 1098–1109 | DOI | Zbl
[9] A. V. Lakeev, Yu. E. Lipke, V. A. Rusanov, “K differentsialnoi realizatsii bilineinoi sistemy vtorogo poryadka v gilbertovom prostranstve”, Sib. zhurn. industr. matematiki, XXII:2 (2019), 27–36 | MR | Zbl
[10] A. V. Lipke, Yu. E. Lakeev, V. A. Rusanov, “Metricheskie svoistva operatora Releya-Rittsa”, Izv. vuzov. Matematika, 2022, no. 9, 54–63
[11] M. Mesarovich, Ya. Takakhara, Obschaya teoriya sistem: Matematicheskie osnovy, Mir, M., 1978, 312 pp.
[12] V. A. Rusanov, A. V. Daneev, Yu. E. Lipke, “K geometricheskim osnovam differentsialnoi realizatsii dinamicheskikh protsessov v gilbertovom prostranstve”, Kibernetika i sistemnyi analiz, 53:4 (2017), 71–83 | MR | Zbl
[13] V. A. Rusanov, A. V. Lakeev, Yu. E. Lipke, “K razreshimosti differentsialnoi realizatsii minimalnogo dinamicheskogo poryadka semeistva nelineinykh protsessov “vkhod-vykhod” v gilbertovom prostranstve”, Differents. uravneniya, 51:4 (2015), 524–537 | DOI | Zbl
[14] A. V. Savelev, “Dinamicheskie modeli nervnoi sistemy: identifikatsiya i printsipy organizatsii neirosetei”, Materialy XI Vserossiiskogo seminara “Neiroinformatika i ee prilozheniya”, Institut vychislitelnogo modelirovaniya SO RAN, Krasnoyarsk, 2003, 140–142
[15] A. V. Savelev, “Istochniki variatsii dinamicheskikh svoistv nervnoi sistemy na sinapticheskom urovne v neirokompyutinge”, Iskusstvennyi intellekt, 4, NAN Ukrainy, 2006, 323–338
[16] R. Engelking, Obschaya topologiya, Mir, M., 1986
[17] V. A. Yurko, “Vosstanovlenie differentsialnykh operatorov peremennykh poryadkov na zvezdoobraznom grafe po spektram”, Differents. uravneniya, 49:12 (2013), 1537–1548 | Zbl
[18] S. Brzycbczy, R. Poznanski, Mathematical Neuroscience, Academic Press, 2013
[19] Y. Chen, “A new one-parameter inhomogeneous differential realization of the spl(2,1) superalgebra”, Internat. J. Theoret. Phys., 51:12 (2012), 3763–3768 | DOI | MR | Zbl
[20] A. V. Daneev, A. V. Lakeyev, V. A. Rusanov, “Existence of a bilinear differential realization in the constructions of tensor product of Hilbert spaces”, WSEAS Transactions on Mathematics, 19 (2020), 99–107 | DOI
[21] A. V. Daneev, A. V. Lakeyev, V. A. Rusanov, P. A. Plesnyov, “Differential non-autonomous representation of the integrative activity of a neural population by a bilinear second-order model with delay”, Lecture Notes in Networks and Systems, 319, 2022, 191–199 | DOI
[22] A. H. Hasanov, V. G. Romanov, Introduction to Inverse Problems for Differential Equations, Springer International Publishing AG, Berlin, 2017 ; 2021, 515 pp. | MR | Zbl
[23] Y. Komma, “Nonlinear semi-groups in Hilbert space Japan”, J. Math. Soc., 19:4 (1967), 493–507 | MR
[24] E. Music, “An integrated brain-machine interface platform with thousands of channels”, J. Med. Internet Res., 21:10 (2019), el6194 | DOI
[25] V. A. Rusanov, A. V. Lakeyev, A. V. Banshchikov, A. V. Daneev, “On the bilinear second order differential realization of a infinite-dimensional dynamical system: An approach based on extensions to $M_2$-operators”, Fractal and Fractional, 7:4, Special Issues: Nonlinear Functional Analysis and Applications (2023), 1–18 | DOI
[26] V. A. Rusanov, A. V. Lakeyev, Yu. E. Linke, V. A. Voronov, “On realization of dynamic systems: Assessment of fiducial accuracy in the process of adjustment of the realization matrix”, Far East Journal of Dynamical Systems, 25:1 (2014), 23–35 | MR | Zbl