Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2023_26_2_a6, author = {M. B. Karmanova}, title = {Lipschitz images of open sets on {sub-Lorentzian} structures}, journal = {Matemati\v{c}eskie trudy}, pages = {138--161}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2023_26_2_a6/} }
M. B. Karmanova. Lipschitz images of open sets on sub-Lorentzian structures. Matematičeskie trudy, Tome 26 (2023) no. 2, pp. 138-161. http://geodesic.mathdoc.fr/item/MT_2023_26_2_a6/
[1] V. P. Berestovskii, V. M. Gichev, “Metrizovannye levoinvariantnye poryadki na topologicheskikh gruppakh”, Algebra i analiz, 11:4 (1999), 1–34 | MR | Zbl
[2] M. B. Karmanova, “Dvustupenchatye sublorentsevy struktury i poverkhnosti-grafiki”, Izv. RAN. Seriya Matematika, 84:1 (2020), 60–104 | DOI | MR | Zbl
[3] M. B. Karmanova, “Mera obrazov kontaktnykh otobrazhenii na dvukhstupenchatykh sublorentsevykh strukturakh”, Matem. zametki, 113:1 (2023), 149–153 | DOI | MR | Zbl
[4] M. B. Karmanova, “Ob approksimiruemosti i parametrizatsii proobrazov elementov grupp Karno na sublorentsevykh strukturakh”, Matem. zametki, 111:1 (2022), 140–144 | DOI | MR | Zbl
[5] M. B. Karmanova, “Ploschad poverkhnostei na sublorentsevykh strukturakh glubiny dva”, Matem. tr., 26:1 (2023), 93–119
[6] M. B. Karmanova, “Ploschad grafikov na proizvolnykh gruppakh Karno s sublorentsevoi strukturoi”, Sib. matem. zhurn., 61:4 (2020), 823–848 | MR | Zbl
[7] M. B. Karmanova, “Formula koploschadi na gruppakh Karno s sublorentsevoi strukturoi dlya vektor-funktsii”, Sib. matem. zhurn., 62:2 (2021), 298–325 | Zbl
[8] M. B. Karmanova, “Formula ploschadi dlya lipshitsevykh otobrazhenii prostranstv Karno Karateodori”, Izv. RAN. Ser. mat., 78:3 (2014), 53–78 | DOI | MR | Zbl
[9] V. R. Krym, H. H. Petrov, “Uravneniya dvizheniya zaryazhennoi chastitsy v pyatimernoi modeli obschei teorii otnositelnosti s negolonomnym chetyrekhmernym prostranstvom skorostei”, Vestn. S-Peterb. un-ta. Ser. 1, 2007, no. 1, 62–70 | Zbl
[10] V. R. Krym, H. H. Petrov, “Tenzor krivizny i uravneniya Einshteina dlya chetyrekhmernogo negolonomnogo raspredeleniya”, Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya, 2008, no. 3, 68–80 | MR | Zbl
[11] V. M. Miklyukov, A. A. Klyachin, V. A. Klyachin, Maksimalnye poverkhnosti v prostranstve-vremeni Minkovskogo, 2011 http://www.uchimsya.info/maxsurf.pdf | Zbl
[12] I. Bars, J. Terning, Extra dimensions in space and time, Springer, New York, 2010 | Zbl
[13] W. Craig, S. Weinstein, “On Determinism and Well-Posedness in Multiple Time Dimensions'”, Proc. R. Soc. A, 465:2110 (2008), 3023–3046 | DOI | MR
[14] G. B. Folland, E. M. Stein, Hardy spaces on homogeneous group, Princeton Univ. Press, Princeton, 1982 | MR
[15] M. Grochowski, “Remarks on the global sub-Lorentzian geometry”, Anal. Math. Phys., 3:4 (2013), 295–309 | DOI | MR | Zbl
[16] M. Grochowski, “Reachable sets for the Heisenberg sub-Lorentzian structure on $\mathbb{R}^3$. An estimate for the distance function”, J. Dyn. Control Syst., 12:2 (2006), 145–160 | DOI | MR | Zbl
[17] M. Grochowski, “Properties of reachable sets in the sub-Lorentzian geometry”, J. Geom. Phys., 59:7 (2009), 885–900 | DOI | MR | Zbl
[18] M. Grochowski, “Normal forms and reachable sets for analytic Martinet sub-Lorentzian structures of Hamiltonian type”, J. Dyn. Control Syst., 17:1 (2011), 49–75 | DOI | MR | Zbl
[19] M. Grochowski, “Reachable Sets For Contact sub-Lorentzian Metrics on R3. Application to control Affine Systems with the Scalar Input”, J. Math. Sci. (N.Y.), 177:3 (2011), 383–394 | DOI | MR | Zbl
[20] M. Grochowski, “The structure of reachable sets for affine control systems induced by generalized Martinet sub-Lorentzian metrics”, ESAIM Control Optim. Calc. Var., 18:4 (2012), 1150–1177 | DOI | MR | Zbl
[21] M. Grochowski, “The structure of reachable sets and geometric optimality of singular trajectories for certain affine control systems in R3. The sub-Lorentzian approach”, J. Dyn. Control Syst., 20 (2014), 59–89 | DOI | MR | Zbl
[22] M. Grochowski, “Geodesies in the sub-Lorentzian geometry”, Bull. Pol. Acad. Sci. Math., 50:2 (2002), 161–178 | MR | Zbl
[23] M. Karmanova, S. Vodopyanov, “An area formla for contact $C^1$-mappings of Carnot manifolds”, Complex Var. Elliptic Equ., 55:1–3 (2010), 317–329 | DOI | MR | Zbl
[24] A. Korolko, I. Markina, “Nonholonomic Lorentzian geometry on some H-type groups”, J. Geom. Anal., 19:4 (2009), 864–889 | DOI | MR | Zbl
[25] A. Korolko, I. Markina, “Geodesies on H-type quaternion groups with sub-Lorentzian metric and their physical interpretation”, Complex Anal. Oper. Theory, 4:3 (2010), 589–618 | DOI | MR | Zbl
[26] G. L. Naber, The Geometry of Minkowski Spacetime. An Introduction to the Mathematics of the Special Theory of Relativity, Appl. Math. Sci., 92, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[27] B. Nielsen, “Minimal immersion. Einstein's equations and Mach's principle”, J. Geom. Phys., 4 (1987), 1–20 | DOI | MR | Zbl
[28] P. Pansu, “Metriques de Carnot-Caratheodory et quasi-isometries des espaces symetriques de rang 1”, Math. Ann., 129:1 (1989), 1–60 | DOI | MR | Zbl
[29] S. K. Vodopyanov, A. D. Ukhlov, “Set fonctions and their applications in the theory of Lebesgue and Sobolev spaces. I”, Siberian Adv. Math., 14:4 (2004), 78–125 | MR | Zbl
[30] S. K. Vodopyanov, A. D. Ukhlov, “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. II”, Siberian Adv. Math., 15:1 (2005), 91–125 | MR | Zbl
[31] S. Vodopyanov, “Geometry of Carnot-Caratheodory Spaces and Differentiability of Mappings”, Contemporary Mathematics, 424, AMS, Providence, RI, 2007, 247–301 | DOI | MR | Zbl
[32] S. K. Vodopyanov, “$\mathcal{P}$-Differentiability on Carnot Groups in Different Topologies and Related Topics”, Trudy no analizu i geometrii, Institut matematiki SO RAN, Novosibirsk, 2000, 603–670 | MR | Zbl