The generating function is rational for the number of rooted forests in a circulant graph
Matematičeskie trudy, Tome 26 (2023) no. 2, pp. 129-137
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the generating function $\Phi$ for the number $f_\Gamma(n)$ of rooted spanning forests in the circulant graph $\Gamma$, where $\Phi(x)=\sum_{n=1}^\infty f_\Gamma(n)x^n$ and either $\Gamma=C_n(s_1,s_2,\dots,s_k)$ or $\Gamma=C_{2n}(s_1,s_2,\dots,s_k,n)$. We show that $\Phi$ is a rational function with integer coefficients that satisfies the condition $\Phi(x)=-\Phi(1/x)$. We illustrate this result by a series of examples.
@article{MT_2023_26_2_a5,
author = {U. P. Kamalov and A. B. Kutbaev and A. D. Mednykh},
title = {The generating function is rational for the number of rooted forests in a circulant graph},
journal = {Matemati\v{c}eskie trudy},
pages = {129--137},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2023_26_2_a5/}
}
TY - JOUR AU - U. P. Kamalov AU - A. B. Kutbaev AU - A. D. Mednykh TI - The generating function is rational for the number of rooted forests in a circulant graph JO - Matematičeskie trudy PY - 2023 SP - 129 EP - 137 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2023_26_2_a5/ LA - ru ID - MT_2023_26_2_a5 ER -
%0 Journal Article %A U. P. Kamalov %A A. B. Kutbaev %A A. D. Mednykh %T The generating function is rational for the number of rooted forests in a circulant graph %J Matematičeskie trudy %D 2023 %P 129-137 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2023_26_2_a5/ %G ru %F MT_2023_26_2_a5
U. P. Kamalov; A. B. Kutbaev; A. D. Mednykh. The generating function is rational for the number of rooted forests in a circulant graph. Matematičeskie trudy, Tome 26 (2023) no. 2, pp. 129-137. http://geodesic.mathdoc.fr/item/MT_2023_26_2_a5/