Reconstruction of parameters of a set of radiant points from their images
Matematičeskie trudy, Tome 26 (2023) no. 2, pp. 62-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Within the framework of geometric tomography, inverse problems of photometry, wave optics, and discrete tomography, we study questions on reconstruction of the spatial location and luminosity of a discrete distribution of radiant sources from its images obtained with the use of a small number of optical systems. We analyze the problem on finding geometric parameters of such a distribution and describe sources of ambiguity. We consider the inverse problem on reconstruction of a discrete distribution that consists of incoherent and monochromatic sources and suggest uniqueness criteria for its solution. We also suggest a constructive approach to numerical solution of the inverse problem on reconstruction of the coordinates and luminosity of a family of radiant pinpoint sources from their images.
@article{MT_2023_26_2_a3,
     author = {E. Yu. Derevtsov},
     title = {Reconstruction of parameters of a set of radiant points from their images},
     journal = {Matemati\v{c}eskie trudy},
     pages = {62--85},
     year = {2023},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2023_26_2_a3/}
}
TY  - JOUR
AU  - E. Yu. Derevtsov
TI  - Reconstruction of parameters of a set of radiant points from their images
JO  - Matematičeskie trudy
PY  - 2023
SP  - 62
EP  - 85
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MT_2023_26_2_a3/
LA  - ru
ID  - MT_2023_26_2_a3
ER  - 
%0 Journal Article
%A E. Yu. Derevtsov
%T Reconstruction of parameters of a set of radiant points from their images
%J Matematičeskie trudy
%D 2023
%P 62-85
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/MT_2023_26_2_a3/
%G ru
%F MT_2023_26_2_a3
E. Yu. Derevtsov. Reconstruction of parameters of a set of radiant points from their images. Matematičeskie trudy, Tome 26 (2023) no. 2, pp. 62-85. http://geodesic.mathdoc.fr/item/MT_2023_26_2_a3/

[1] Dzh. Gudmen, Vvedenie v fure-optiku, Mir, M., 1970

[2] E. Yu. Derevtsov, “Ob odnoi zadache volnovoi optiki”, Vychislitelnye problemy matematicheskikh zadach geofiziki, Vychislitelnyi tsentr SO AN SSSR, Novosibirsk, 1977, 36–47

[3] E. Yu. Derevtsov, Chislennoe reshenie nekotorykh zadach volnovoi optiki, Preprint No 275, VTs SO AN SSSR, Novosibirsk, 1981

[4] V. R. Kireitov, “O zadache vosstanovleniya opticheskoi poverkhnosti po ee izobrazheniyam”, Funkts. analiz i ego pril., 10:3 (1975), 45–54

[5] V. R. Kireitov, “O nekotorykh obratnykh zadachakh volnovoi optiki. Ch. 1”, Matematicheskie problemy geofiziki, 6, Vychislitelnyi tsentr SO AN SSSR, Novosibirsk, 1975, 167–210

[6] V. R. Kireitov, “O nekotorykh obratnykh zadachakh volnovoi optiki. Ch. 2”, Matematicheskie problemy geofiziki, 6, Vychislitelnyi tsentr SO AN SSSR, Novosibirsk, 1975, 90–121

[7] V. R. Kireitov, Obratnye zadachi fotometrii, Vychislitelnyi tsentr SO AN SSSR, Novosibirsk, 1983

[8] M. M. Lavrentev, V. S. Ladyzhets, “Ob odnoi obratnoi zadache geometricheskoi optiki”, Dokl. AN SSSR, 269:6 (1983), 1313–1315 | MR | Zbl

[9] M. M. Lavrentev, E. K. Derevtsov, V. A. Sharafutdnnov, “Ob opredelenii opticheskogo tela, nakhodyaschegosya v odnorodnoi srede, po ego izobrazheniyam”, Dokl. AN SSSR, 260:4 (1981), 799–803 | MR | Zbl

[10] A. N. Lobanov, Fotogrammetriya, Uchebnik dlya vuzov, 2-e izd., Nedra, M., 1984

[11] A. I. Obnralov, A. N. Limonov, L. A. Gavrilova, Fotogrammetriya i distantsionnoe zondirovanie, KolosS, M., 2006

[12] G. Khermen, Vosstanovlenie izobrazhenii po proektsiyam: Osnovy, rekonstruktivnoi tomografii, Mir, M., 1983 | MR

[13] A. Alpers, P. Gritzmann, “On Stability, Error Correction, and Noise Compensation in Discrete Tomography”, SIAM J. Discrete Math., 20:1 (2006), 227–239 | DOI | MR | Zbl

[14] E. Yu. Derevtsov, “Ghost distributions in the eone-beam tomography”, J. Inverse Ill-Posed Probl., 5:5 (1997), 411–426 | DOI | MR | Zbl

[15] R. J. Gardner, Geometric Tomography, 2nd edition, Cambridge University Press, New York, 2006 | MR | Zbl

[16] G. T. Herman, A. Kuba, Advances in Discrete Tomography and Its Applications, Birkhauser Boston, Boston, 2007 | MR | Zbl

[17] A. K. Louis, “Ghosts in tomography the null space of the radon transform”, Math. Methods Appl. Sci., 3:1 (1981), 1–10 | DOI | MR | Zbl

[18] A. K. Louis, “Nonuniqueness in inverse Radon problems: the frequency distribution of the ghosts”, Math. Z., 185:3 (1984), 429–440 | DOI | MR | Zbl

[19] A. K. Louis, “Orthogonal function series expansions and the null space of the radon transform”, SI AM J. Math. Anal., 15 (1984), 621–633 | DOI | MR | Zbl

[20] V. A. Sharafutdinov, “Uniqueness theorems for the exponential X-ray transform”, J. Inverse Ill-Posed Probl., 1:4 (1993), 355–372 | DOI | MR | Zbl

[21] K. T. Smith, D. G. Solmon, S. L. Wagner, “Practical and mathematical aspects of the problem of reconstructing objects from radiographs”, Bull. Amer. Math. Soc., 83:11 (1977), 1227–1270 ; 12, 3905–3916 | DOI | MR | Zbl

[22] B. van Dalen, “Stability results for uniquely determined sets from two directions in discrete tomography”, Discrete Mathematics, 309 (2009) | MR