Reconstruction of parameters of a set of radiant points from their images
Matematičeskie trudy, Tome 26 (2023) no. 2, pp. 62-85

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the framework of geometric tomography, inverse problems of photometry, wave optics, and discrete tomography, we study questions on reconstruction of the spatial location and luminosity of a discrete distribution of radiant sources from its images obtained with the use of a small number of optical systems. We analyze the problem on finding geometric parameters of such a distribution and describe sources of ambiguity. We consider the inverse problem on reconstruction of a discrete distribution that consists of incoherent and monochromatic sources and suggest uniqueness criteria for its solution. We also suggest a constructive approach to numerical solution of the inverse problem on reconstruction of the coordinates and luminosity of a family of radiant pinpoint sources from their images.
@article{MT_2023_26_2_a3,
     author = {E. Yu. Derevtsov},
     title = {Reconstruction of parameters of a set of radiant points from their images},
     journal = {Matemati\v{c}eskie trudy},
     pages = {62--85},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2023_26_2_a3/}
}
TY  - JOUR
AU  - E. Yu. Derevtsov
TI  - Reconstruction of parameters of a set of radiant points from their images
JO  - Matematičeskie trudy
PY  - 2023
SP  - 62
EP  - 85
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2023_26_2_a3/
LA  - ru
ID  - MT_2023_26_2_a3
ER  - 
%0 Journal Article
%A E. Yu. Derevtsov
%T Reconstruction of parameters of a set of radiant points from their images
%J Matematičeskie trudy
%D 2023
%P 62-85
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2023_26_2_a3/
%G ru
%F MT_2023_26_2_a3
E. Yu. Derevtsov. Reconstruction of parameters of a set of radiant points from their images. Matematičeskie trudy, Tome 26 (2023) no. 2, pp. 62-85. http://geodesic.mathdoc.fr/item/MT_2023_26_2_a3/