Optimal quadrature formulas for curvilinear integrals of the first kind
Matematičeskie trudy, Tome 26 (2023) no. 2, pp. 44-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem on optimal quadrature formulas for curvilinear integrals of the first kind that are exact for constant functions. This problem is reduced to the minimization problem for a quadratic form in many variables whose matrix is symmetric and positive definite. We prove that the objective quadratic function attains its minimum at a single point of the corresponding multi-dimensional space. Hence, for a prescribed set of nodes, there exists a unique optimal quadrature formula over a closed smooth contour, i.e., a formula with the least possible norm of the error functional in the conjugate space. We show that the tuple of weights of the optimal quadrature formula is a solution of a special nondegenerate system of linear algebraic equations.
@article{MT_2023_26_2_a2,
     author = {V. L. Vaskevich and I. M. Turgunov},
     title = {Optimal quadrature formulas for curvilinear integrals of the first kind},
     journal = {Matemati\v{c}eskie trudy},
     pages = {44--61},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2023_26_2_a2/}
}
TY  - JOUR
AU  - V. L. Vaskevich
AU  - I. M. Turgunov
TI  - Optimal quadrature formulas for curvilinear integrals of the first kind
JO  - Matematičeskie trudy
PY  - 2023
SP  - 44
EP  - 61
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2023_26_2_a2/
LA  - ru
ID  - MT_2023_26_2_a2
ER  - 
%0 Journal Article
%A V. L. Vaskevich
%A I. M. Turgunov
%T Optimal quadrature formulas for curvilinear integrals of the first kind
%J Matematičeskie trudy
%D 2023
%P 44-61
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2023_26_2_a2/
%G ru
%F MT_2023_26_2_a2
V. L. Vaskevich; I. M. Turgunov. Optimal quadrature formulas for curvilinear integrals of the first kind. Matematičeskie trudy, Tome 26 (2023) no. 2, pp. 44-61. http://geodesic.mathdoc.fr/item/MT_2023_26_2_a2/

[1] S. L. Sobolev, V. L. Vaskevich, Kubaturnye formuly, Izd-vo Instituta matematiki, Novosibirsk, 1996

[2] V. L. Vaskevich, “Pogreshnost, obuslovlennost i garantirovannaya tochnost mnogomernykh sfericheskikh kubatur”, Sib. matem. zhuri., 53:6 (2012), 1245–1262 | MR | Zbl

[3] V. L. Vaskevich, “Sfericheskie kubaturnye formuly v prostranstvakh Soboleva”, Sib. matem. zhurn., 58:3 (2017), 530–542 | MR | Zbl

[4] S. M. Nikolskii, P. I. Lizorkin, “Priblizhenie sfericheskimi funktsiyami”, Tr. MIAN, 173, 1986, 181–189 | Zbl

[5] V. L. Vaskevich, “Konstanty i funktsii vlozheniya prostranstv Sobolevskogo tipa na edinichnoi sfere”, Dokl. RAN, 433:4 (2010), 441–446 | Zbl

[6] V. L. Vaskevich, “Konstanty vlozheniya periodicheskikh prostranstv Soboleva drobnogo poryadka”, Sib. matem. zhurn., 49:5 (2008), 1019–1027 | MR | Zbl

[7] V. L. Vaskevich, “Ekstremalnye funktsii kubaturnykh formul na mnogomernoi sfere i sfericheskie splainy”, Matem. tr., 14:2 (2011), 14–27 | Zbl