Exponential inequalities for the tail probabilities of the number of cycles in generalized random graphs
Matematičeskie trudy, Tome 26 (2023) no. 2, pp. 30-43
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R_n$ be the centered and normalized number of cycles of fixed length contained in a generalized random graph with $n$ vertices. We obtain a Höffding-type exponential inequality for the tail probability of $R_n$.
@article{MT_2023_26_2_a1,
author = {A. A. Bystrov and N. V. Volod'ko},
title = {Exponential inequalities for the tail probabilities of the number of cycles in generalized random graphs},
journal = {Matemati\v{c}eskie trudy},
pages = {30--43},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2023_26_2_a1/}
}
TY - JOUR AU - A. A. Bystrov AU - N. V. Volod'ko TI - Exponential inequalities for the tail probabilities of the number of cycles in generalized random graphs JO - Matematičeskie trudy PY - 2023 SP - 30 EP - 43 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2023_26_2_a1/ LA - ru ID - MT_2023_26_2_a1 ER -
%0 Journal Article %A A. A. Bystrov %A N. V. Volod'ko %T Exponential inequalities for the tail probabilities of the number of cycles in generalized random graphs %J Matematičeskie trudy %D 2023 %P 30-43 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2023_26_2_a1/ %G ru %F MT_2023_26_2_a1
A. A. Bystrov; N. V. Volod'ko. Exponential inequalities for the tail probabilities of the number of cycles in generalized random graphs. Matematičeskie trudy, Tome 26 (2023) no. 2, pp. 30-43. http://geodesic.mathdoc.fr/item/MT_2023_26_2_a1/