Exponential inequalities for the tail probabilities of the number of cycles in generalized random graphs
Matematičeskie trudy, Tome 26 (2023) no. 2, pp. 30-43

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R_n$ be the centered and normalized number of cycles of fixed length contained in a generalized random graph with $n$ vertices. We obtain a Höffding-type exponential inequality for the tail probability of $R_n$.
@article{MT_2023_26_2_a1,
     author = {A. A. Bystrov and N. V. Volod'ko},
     title = {Exponential inequalities for the tail probabilities of the number of cycles in generalized random graphs},
     journal = {Matemati\v{c}eskie trudy},
     pages = {30--43},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2023_26_2_a1/}
}
TY  - JOUR
AU  - A. A. Bystrov
AU  - N. V. Volod'ko
TI  - Exponential inequalities for the tail probabilities of the number of cycles in generalized random graphs
JO  - Matematičeskie trudy
PY  - 2023
SP  - 30
EP  - 43
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2023_26_2_a1/
LA  - ru
ID  - MT_2023_26_2_a1
ER  - 
%0 Journal Article
%A A. A. Bystrov
%A N. V. Volod'ko
%T Exponential inequalities for the tail probabilities of the number of cycles in generalized random graphs
%J Matematičeskie trudy
%D 2023
%P 30-43
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2023_26_2_a1/
%G ru
%F MT_2023_26_2_a1
A. A. Bystrov; N. V. Volod'ko. Exponential inequalities for the tail probabilities of the number of cycles in generalized random graphs. Matematičeskie trudy, Tome 26 (2023) no. 2, pp. 30-43. http://geodesic.mathdoc.fr/item/MT_2023_26_2_a1/