Positive reducibilities, extreme numberings, and completeness
Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 176-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we study universal, minimal, and complete numberings of families of arithmetic sets. We show that, for every $m\in\mathbb{N}$ and every nontrivial $\Sigma^0_{m+2}$-computable family $\mathcal{S}$, there exists a $\Sigma^0_{m+2}$-computable numbering that is not universal with respect to positive reducibilities and is complete with respect to each element $B\in\mathcal{S}$. For finite families of computably enumerable sets, we obtain necessary and sufficient conditions for existence of numberings that are complete, computable, and not universal with respect to positive reducibilities. For every infinite $\Sigma^0_{m+2}$-computable family $\mathcal{S}$ and every element $B\in\mathcal{S}$, we construct a $\Sigma^0_{m+2}$-computable numbering that is complete with respect to $B$ and minimal with respect to classical and positive reducibilities.
@article{MT_2023_26_1_a8,
     author = {M. Kh. Faizrahmanov},
     title = {Positive reducibilities, extreme numberings, and completeness},
     journal = {Matemati\v{c}eskie trudy},
     pages = {176--191},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a8/}
}
TY  - JOUR
AU  - M. Kh. Faizrahmanov
TI  - Positive reducibilities, extreme numberings, and completeness
JO  - Matematičeskie trudy
PY  - 2023
SP  - 176
EP  - 191
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2023_26_1_a8/
LA  - ru
ID  - MT_2023_26_1_a8
ER  - 
%0 Journal Article
%A M. Kh. Faizrahmanov
%T Positive reducibilities, extreme numberings, and completeness
%J Matematičeskie trudy
%D 2023
%P 176-191
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2023_26_1_a8/
%G ru
%F MT_2023_26_1_a8
M. Kh. Faizrahmanov. Positive reducibilities, extreme numberings, and completeness. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 176-191. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a8/

[1] S. A. Badaev, “Minimalnye numeratsii”, Tr. In-ta matematiki SO RAN, 25, 1993, 3–34

[2] S. A. Badaev, S. S. Goncharov, “O polureshetkakh Rodzhersa semeistv arifmeticheskikh mnozhestv”, Algebra i logika, 40:5 (2001), 507–522

[3] S. A. Badaev, S. S. Goncharov, “Obobschenno vychislimye universalnye numeratsii”, Algebra i logika, 53:5 (2014), 555–569

[4] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Neskolko zamechanii o popolneniyakh numeratsii”, Sib. matem. zhurn., 49:5 (2008), 986–991

[5] S. A. Badaev, S.Yu. Podzorov, “Minimalnye nakrytiya v polureshetkakh Rodzhersa”, Sib. matem. zhurn., 43:4 (2002), 769–778

[6] S. S. Goncharov, A. Sorbn, “Obobschenno-vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641

[7] A. N. Degtev, “O svodimostyakh numeratsii”, Matem. sb., 112(154):2 (6) (1980), 207–219

[8] A. N. Degtev, “O $p$-svodimosti vychislimykh numeratsii”, Matem. zametki, 69:1 (2001), 31–35

[9] A. N. Degtev, M. L. Platonov, “O $e$-glasnykh numeratsiyakh”, Sib. matem. zhurn., 49:2 (2008), 299–307

[10] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977

[11] A. N. Maltsev, “Polno numerovannye mnozhestva”, Algebra i logika, 2:2 (1963), 4–29

[12] M. L. Platonov, “O verkhnikh polureshetkakh $e$-stepenei vychislimykh numeratsii”, Vestnik TyumGU, 5 (2006), 160–162

[13] S. Yu. Podzorov, “O predelnosti naibolshego elementa polureshetki Rodzhersa”, Matem. tr., 7:2 (2004), 98–108

[14] S. Yu. Podzorov, “O lokalnom stroenii polureshetok Rodzhersa $\Sigma_n^0$-vychislimykh numeratsii”, Algebra i logika, 44:2 (2005), 148–172

[15] X. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972

[16] M. Kh. Faizrakhmanov, “O $p$-universalnykh i $p$-minimalnykh numeratsiyakh”, Sib. matem. zhurn., 63:2 (2022), 440–449

[17] M. Kh. Faizrakhmanov, “Svodimost po perechislimosti i pozitivnaya svodimost numeratsii semeistv arifmeticheskikh mnozhestv”, Sib. matem. zhurn., 64:1 (2023), 204–212

[18] S. A. Badaev, S. S. Goncbarov, A. Sorbi, “Completeness and universality of arithmetical numberings”, Computability and Models, The University Series in Mathematics, Springer, Boston, 2003

[19] S. B. Cooper, “Enumeration reductibility, nondeterministic computations and relative computability of partial functions”, Recursion Theory Week, Lecture Notes in Mathematics, 1432, eds. Ambos-Spies K., Muller G.H., Sacks G.E., Springer, Berlin–Heidelberg, 1990, 57–110