Estimates of solutions in a model of antiviral immune response
Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 150-175

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model of antiviral immune response suggested by G.I. Marchuk. The model is described by a system of differential equations with several delays. We study asymptotic stability for a stationary solution of the system that corresponds to a completely healthy organism. We estimate the attraction set of this stationary solution. We also find estimates of solutions characterizing the stabilization rate at infinity. A Lyapunov–Krasovskii functional is used in the proof.
@article{MT_2023_26_1_a7,
     author = {M. A. Skvortsova},
     title = {Estimates of solutions in a model of antiviral immune response},
     journal = {Matemati\v{c}eskie trudy},
     pages = {150--175},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a7/}
}
TY  - JOUR
AU  - M. A. Skvortsova
TI  - Estimates of solutions in a model of antiviral immune response
JO  - Matematičeskie trudy
PY  - 2023
SP  - 150
EP  - 175
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2023_26_1_a7/
LA  - ru
ID  - MT_2023_26_1_a7
ER  - 
%0 Journal Article
%A M. A. Skvortsova
%T Estimates of solutions in a model of antiviral immune response
%J Matematičeskie trudy
%D 2023
%P 150-175
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2023_26_1_a7/
%G ru
%F MT_2023_26_1_a7
M. A. Skvortsova. Estimates of solutions in a model of antiviral immune response. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 150-175. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a7/