Exponential stability and estimates of solutions to systems of functional differential equations
Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 130-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

For systems of linear autonomous delay differential equations, we develop a method for studying stability, which consists in constructing an auxiliary system whose asymptotic properties are close to those of the original system. Alongside new signs of stability, we find sharp estimates for the rate at which solutions tend to zero. The effectiveness of the results obtained is illustrated by a number of examples.
@article{MT_2023_26_1_a6,
     author = {T. L. Sabatulina and V. V. Malygina},
     title = {Exponential stability and estimates of solutions to systems of functional differential equations},
     journal = {Matemati\v{c}eskie trudy},
     pages = {130--149},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a6/}
}
TY  - JOUR
AU  - T. L. Sabatulina
AU  - V. V. Malygina
TI  - Exponential stability and estimates of solutions to systems of functional differential equations
JO  - Matematičeskie trudy
PY  - 2023
SP  - 130
EP  - 149
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2023_26_1_a6/
LA  - ru
ID  - MT_2023_26_1_a6
ER  - 
%0 Journal Article
%A T. L. Sabatulina
%A V. V. Malygina
%T Exponential stability and estimates of solutions to systems of functional differential equations
%J Matematičeskie trudy
%D 2023
%P 130-149
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2023_26_1_a6/
%G ru
%F MT_2023_26_1_a6
T. L. Sabatulina; V. V. Malygina. Exponential stability and estimates of solutions to systems of functional differential equations. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 130-149. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a6/

[1] H. B. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991

[2] N. V. Azbelev, P. M. Simonov, Ustoichivost reshenii uravnenii s obyknovennymi proizvodnymi, izd-vo Perm. un-ta, Perm, 2001

[3] S. A. Gusarenko, “Priznaki razreshimosti zadach o nakoplenii vozmuschenii dlya funktsionalno-differentsialnykh uravnenii. Funktsionalno-differentsialnye uravneniya”, Mezhvuz. sb. nauchn. tr., Perm, 1987, 30–40

[4] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovykh prostranstvakh, Nauka, M., 1970

[5] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981

[6] V. V. Malygina, “Otsenka pokazatelya eksponenty dlya ustoichivykh reshenii odnogo klassa differentsialno-raznostnykh uravnenii”, Izv. vuzov. Matem., 2021, no. 12, 67–79

[7] V. V. Malygina, K. M. Chudinov, “O tochnykh dvustoronnikh otsenkakh ustoichivykh reshenii avtonomnykh funktsionalno-differentsialnykh uravnenii”, Sib. matem. zhurn., 63:2 (2022), 360–378

[8] A. A. Martynyuk, A. Yu. Obolenskii, “Ustoichivost reshenii avtonomnykh sistem Vazhevskogo”, Differents. uravneniya, 16:8 (1980), 1392–1407

[9] A. D. Myshkis, Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972

[10] A. Yu. Obolenskii, “Ob ustoichivosti reshenii avtonomnykh sistem Vazhevskogo s zapazdyvaniem”, Ukr. matem. zhurn., 35 (1983), 574–579

[11] N. V. Pertsev, “Primenenie M-matrits dlya postroeniya eksponentsialnykh otsenok reshenii zadachi Koshi dlya nekotorykh sistem lineinykh raznostnykh i differentsialnykh uravnenii”, Matem. trudy, 16:2 (2013), 111–141

[12] N. V. Pertsev, B. Yu. Pichugin, A. N. Pichugina, “Primenenie M-matrits dlya, issledovaniya, matematicheskikh modelei zhivykh sistem”, Matem. biologiya i bioinform., 13:1 (2018), 208–237

[13] Yu. A. Ryabov, “Nekotorye asimptoticheskie svoistva lineinykh sistem s malym zapazdyvaniem po vremeni”, DAN SSSR, 151 (1963), 52–54

[14] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, SIAM, Philadelphia, 1994

[15] I. Gyori, “Interaction between oscillations and global asymptotic stability in delay differential equations”, Differential Integral Equations, 3:1 (1990), 181–200

[16] T. L. Sabatulina, “On sufficient conditions of exponential stability for systems of linear autonomous differential equations with aftereffect”, Functional Differential Equations, 8:1–2 (2021), 73–83