Exponential stability and estimates of solutions to systems of functional differential equations
Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 130-149

Voir la notice de l'article provenant de la source Math-Net.Ru

For systems of linear autonomous delay differential equations, we develop a method for studying stability, which consists in constructing an auxiliary system whose asymptotic properties are close to those of the original system. Alongside new signs of stability, we find sharp estimates for the rate at which solutions tend to zero. The effectiveness of the results obtained is illustrated by a number of examples.
@article{MT_2023_26_1_a6,
     author = {T. L. Sabatulina and V. V. Malygina},
     title = {Exponential stability and estimates of solutions to systems of functional differential equations},
     journal = {Matemati\v{c}eskie trudy},
     pages = {130--149},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a6/}
}
TY  - JOUR
AU  - T. L. Sabatulina
AU  - V. V. Malygina
TI  - Exponential stability and estimates of solutions to systems of functional differential equations
JO  - Matematičeskie trudy
PY  - 2023
SP  - 130
EP  - 149
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2023_26_1_a6/
LA  - ru
ID  - MT_2023_26_1_a6
ER  - 
%0 Journal Article
%A T. L. Sabatulina
%A V. V. Malygina
%T Exponential stability and estimates of solutions to systems of functional differential equations
%J Matematičeskie trudy
%D 2023
%P 130-149
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2023_26_1_a6/
%G ru
%F MT_2023_26_1_a6
T. L. Sabatulina; V. V. Malygina. Exponential stability and estimates of solutions to systems of functional differential equations. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 130-149. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a6/