Sharply transitive representations of the algebra $sl_3(\mathbb{R})$
Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 120-129

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider local sharply transitive representations of the algebra $sl_3(\mathbb{R})$ in the space of local vector fields with analytic coefficients in $\mathbb{R}^8$ that are defined in a neighborhood of the origin. We find a system of differential equations that describes such representations.
@article{MT_2023_26_1_a5,
     author = {M. V. Neshchadim and A. A. Simonov},
     title = {Sharply transitive representations of the algebra $sl_3(\mathbb{R})$},
     journal = {Matemati\v{c}eskie trudy},
     pages = {120--129},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a5/}
}
TY  - JOUR
AU  - M. V. Neshchadim
AU  - A. A. Simonov
TI  - Sharply transitive representations of the algebra $sl_3(\mathbb{R})$
JO  - Matematičeskie trudy
PY  - 2023
SP  - 120
EP  - 129
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2023_26_1_a5/
LA  - ru
ID  - MT_2023_26_1_a5
ER  - 
%0 Journal Article
%A M. V. Neshchadim
%A A. A. Simonov
%T Sharply transitive representations of the algebra $sl_3(\mathbb{R})$
%J Matematičeskie trudy
%D 2023
%P 120-129
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2023_26_1_a5/
%G ru
%F MT_2023_26_1_a5
M. V. Neshchadim; A. A. Simonov. Sharply transitive representations of the algebra $sl_3(\mathbb{R})$. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 120-129. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a5/