Sharply transitive representations of the algebra $sl_3(\mathbb{R})$
Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 120-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider local sharply transitive representations of the algebra $sl_3(\mathbb{R})$ in the space of local vector fields with analytic coefficients in $\mathbb{R}^8$ that are defined in a neighborhood of the origin. We find a system of differential equations that describes such representations.
@article{MT_2023_26_1_a5,
     author = {M. V. Neshchadim and A. A. Simonov},
     title = {Sharply transitive representations of the algebra $sl_3(\mathbb{R})$},
     journal = {Matemati\v{c}eskie trudy},
     pages = {120--129},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a5/}
}
TY  - JOUR
AU  - M. V. Neshchadim
AU  - A. A. Simonov
TI  - Sharply transitive representations of the algebra $sl_3(\mathbb{R})$
JO  - Matematičeskie trudy
PY  - 2023
SP  - 120
EP  - 129
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2023_26_1_a5/
LA  - ru
ID  - MT_2023_26_1_a5
ER  - 
%0 Journal Article
%A M. V. Neshchadim
%A A. A. Simonov
%T Sharply transitive representations of the algebra $sl_3(\mathbb{R})$
%J Matematičeskie trudy
%D 2023
%P 120-129
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2023_26_1_a5/
%G ru
%F MT_2023_26_1_a5
M. V. Neshchadim; A. A. Simonov. Sharply transitive representations of the algebra $sl_3(\mathbb{R})$. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 120-129. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a5/

[1] Ovsyannikov L.V., Group analysis of differential equations, Academic Press, New York, 1982

[2] Mikhalicbenko G.G., Group symmetry of physical structures, Barn. gos. ped. un-t, Barnaul, 2003

[3] Yu. I. Kulakov, Teoriya fizicheskikh struktur, Alfa Vista, Novosibirsk, 2004

[4] Simonov A.A., “On generalized sharply n-transitive groups”, Izv. Ross. Akad. Nauk Ser. Mat., 78:6 (2014), 153–178 (in Russian)

[5] Kyrov V.A., “The analytical method for embedding multidimensional pseudoEuclidean geometries”, Sib. Elektron. Mat. Izv., 15 (2018), 741–758 (in Russian)

[6] M. V. Neshchadim, A. A. Simonov, “Kulakov algebraic systems on groups”, Sib. Math. J., 62:6 (2021), 1357–1368 (in Russian)

[7] Gorbatsevich V.V., Onishchik A.L., “Lie transformation groups. Lie groups and Lie algebras”, v. I, Encyclopaedia Math. Sci., 20, Springer, Berlin, 1993, 95–235

[8] Onishchik A.L., Topology of transitive transformation groups, Johann Ambrosius Barth Verlag GmbH, Leipzig, 1994

[9] Ibragimov N.H., Transformation groups applied to mathematical physics, Riedel, Dordrecht, 1985

[10] Neshchadim M.V., “The Liouville equation and exactly transitive representations of algebra $sl_2(\mathbb{R})$”, Sib. Zh. Ind. Mat., 25:4 (2022), 99–106 (in Russian)

[11] S. Lie, “Diskussion der differentiagleiehung $\frac{d^2z}{dx\,dy}=F(z)$”, Arch. for Math., 6:1 (1881), 112–124

[12] A. B. Zhiber, H. X. Ibragimov, A. B. Shabat, “Uravneniya tipa Liuvillya”, Dokl. AN SSSR, 249:1 (1979), 26–29

[13] A. V. Zhiber, N. H. Ibragimov, A. B. Shabat, “Equations of Liouville type”, Dokl. Akad. Nauk SSSR, 249:1 (1979), 26–29 (in Russian)

[14] Mikhailov A.V., Shabat A.B., Yamilov R.I., “The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems”, Russian Math. Surveys, 42:4 (1987), 3–53

[15] A. V. Zhiber, V. V. Sokolov, “Exactly integrable hyperbolic equations of Liouville type”, Russian Math. Surveys, 56:1 (2001), 63–106