Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2023_26_1_a5, author = {M. V. Neshchadim and A. A. Simonov}, title = {Sharply transitive representations of the algebra $sl_3(\mathbb{R})$}, journal = {Matemati\v{c}eskie trudy}, pages = {120--129}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a5/} }
M. V. Neshchadim; A. A. Simonov. Sharply transitive representations of the algebra $sl_3(\mathbb{R})$. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 120-129. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a5/
[1] Ovsyannikov L.V., Group analysis of differential equations, Academic Press, New York, 1982
[2] Mikhalicbenko G.G., Group symmetry of physical structures, Barn. gos. ped. un-t, Barnaul, 2003
[3] Yu. I. Kulakov, Teoriya fizicheskikh struktur, Alfa Vista, Novosibirsk, 2004
[4] Simonov A.A., “On generalized sharply n-transitive groups”, Izv. Ross. Akad. Nauk Ser. Mat., 78:6 (2014), 153–178 (in Russian)
[5] Kyrov V.A., “The analytical method for embedding multidimensional pseudoEuclidean geometries”, Sib. Elektron. Mat. Izv., 15 (2018), 741–758 (in Russian)
[6] M. V. Neshchadim, A. A. Simonov, “Kulakov algebraic systems on groups”, Sib. Math. J., 62:6 (2021), 1357–1368 (in Russian)
[7] Gorbatsevich V.V., Onishchik A.L., “Lie transformation groups. Lie groups and Lie algebras”, v. I, Encyclopaedia Math. Sci., 20, Springer, Berlin, 1993, 95–235
[8] Onishchik A.L., Topology of transitive transformation groups, Johann Ambrosius Barth Verlag GmbH, Leipzig, 1994
[9] Ibragimov N.H., Transformation groups applied to mathematical physics, Riedel, Dordrecht, 1985
[10] Neshchadim M.V., “The Liouville equation and exactly transitive representations of algebra $sl_2(\mathbb{R})$”, Sib. Zh. Ind. Mat., 25:4 (2022), 99–106 (in Russian)
[11] S. Lie, “Diskussion der differentiagleiehung $\frac{d^2z}{dx\,dy}=F(z)$”, Arch. for Math., 6:1 (1881), 112–124
[12] A. B. Zhiber, H. X. Ibragimov, A. B. Shabat, “Uravneniya tipa Liuvillya”, Dokl. AN SSSR, 249:1 (1979), 26–29
[13] A. V. Zhiber, N. H. Ibragimov, A. B. Shabat, “Equations of Liouville type”, Dokl. Akad. Nauk SSSR, 249:1 (1979), 26–29 (in Russian)
[14] Mikhailov A.V., Shabat A.B., Yamilov R.I., “The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems”, Russian Math. Surveys, 42:4 (1987), 3–53
[15] A. V. Zhiber, V. V. Sokolov, “Exactly integrable hyperbolic equations of Liouville type”, Russian Math. Surveys, 56:1 (2001), 63–106