Sharply transitive representations of the algebra $sl_3(\mathbb{R})$
Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 120-129
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider local sharply transitive representations of the algebra $sl_3(\mathbb{R})$ in the space of local vector fields with analytic coefficients in $\mathbb{R}^8$ that are defined in a neighborhood of the origin. We find a system of differential equations that describes such representations.
@article{MT_2023_26_1_a5,
author = {M. V. Neshchadim and A. A. Simonov},
title = {Sharply transitive representations of the algebra $sl_3(\mathbb{R})$},
journal = {Matemati\v{c}eskie trudy},
pages = {120--129},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a5/}
}
M. V. Neshchadim; A. A. Simonov. Sharply transitive representations of the algebra $sl_3(\mathbb{R})$. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 120-129. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a5/