The area of surfaces on sub-Lorentzian structures of depth two
Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 93-119
Voir la notice de l'article provenant de la source Math-Net.Ru
For contact mappings of Carnot groups of depth two whose image is endowed with a sub-Lorentzian structure, we prove local properties of the surfaces-images and explicitly deduce a sub-Lorentzian analog of the area formula. The result in particular also holds for Lipschitz mappings in the sub-Riemannian sense.
@article{MT_2023_26_1_a4,
author = {M. B. Karmanova},
title = {The area of surfaces on {sub-Lorentzian} structures of depth two},
journal = {Matemati\v{c}eskie trudy},
pages = {93--119},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a4/}
}
M. B. Karmanova. The area of surfaces on sub-Lorentzian structures of depth two. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 93-119. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a4/