The area of surfaces on sub-Lorentzian structures of depth two
Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 93-119

Voir la notice de l'article provenant de la source Math-Net.Ru

For contact mappings of Carnot groups of depth two whose image is endowed with a sub-Lorentzian structure, we prove local properties of the surfaces-images and explicitly deduce a sub-Lorentzian analog of the area formula. The result in particular also holds for Lipschitz mappings in the sub-Riemannian sense.
@article{MT_2023_26_1_a4,
     author = {M. B. Karmanova},
     title = {The area of surfaces on {sub-Lorentzian} structures of depth two},
     journal = {Matemati\v{c}eskie trudy},
     pages = {93--119},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a4/}
}
TY  - JOUR
AU  - M. B. Karmanova
TI  - The area of surfaces on sub-Lorentzian structures of depth two
JO  - Matematičeskie trudy
PY  - 2023
SP  - 93
EP  - 119
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2023_26_1_a4/
LA  - ru
ID  - MT_2023_26_1_a4
ER  - 
%0 Journal Article
%A M. B. Karmanova
%T The area of surfaces on sub-Lorentzian structures of depth two
%J Matematičeskie trudy
%D 2023
%P 93-119
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2023_26_1_a4/
%G ru
%F MT_2023_26_1_a4
M. B. Karmanova. The area of surfaces on sub-Lorentzian structures of depth two. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 93-119. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a4/