Negative numberings in admissible sets.~I
Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 47-92
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct an admissible set $\mathbb{A}$ such that the family of all $\mathbb{A}$-computably enumerable sets possesses a negative computable $\mathbb{A}$-numbering but lacks positive computable $\mathbb{A}$-numberings. We also discuss the question on existence of minimal negative $\mathbb{A}$-numberings.
@article{MT_2023_26_1_a3,
author = {I. Sh. Kalimullin and V. G. Puzarenko and M. Kh. Faizrahmanov},
title = {Negative numberings in admissible {sets.~I}},
journal = {Matemati\v{c}eskie trudy},
pages = {47--92},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a3/}
}
I. Sh. Kalimullin; V. G. Puzarenko; M. Kh. Faizrahmanov. Negative numberings in admissible sets.~I. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 47-92. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a3/