Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2023_26_1_a3, author = {I. Sh. Kalimullin and V. G. Puzarenko and M. Kh. Faizrahmanov}, title = {Negative numberings in admissible {sets.~I}}, journal = {Matemati\v{c}eskie trudy}, pages = {47--92}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a3/} }
I. Sh. Kalimullin; V. G. Puzarenko; M. Kh. Faizrahmanov. Negative numberings in admissible sets.~I. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 47-92. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a3/
[1] R. M. Friedberg, “Three theorems on recursive enumeration. I: Decomposition. II: Maximal set. III: Enumeration without duplication”, J. Symbolic Logic, 23:3 (1958), 309–316
[2] V. G. Puzarenko, “O razreshimykh vychislimykh $\mathbb{A}$-numeratsiyakh”, Algebra i logika, 41:5 (2002), 568–584
[3] V. G. Puzarenko, “K vychislimosti na spetsialnykh modelyakh”, Sib. mat. zhurn., 46:1 (2005), 185–208
[4] I. Sh. Kalimullin, V. G. Puzarenko, M. Kh. Fanzrakhmanov, “Pozitivnye numeratsii v dopustimykh mnozhestvakh”, Sib. mat. zhurn., 61:3 (2020), 607–621
[5] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977
[6] Yu. L. Ershov, Opredelimost i Vychislimost, Nauchnaya kniga (NI-IMIOO NGU), Novosibirsk, 1996
[7] J. Barwise, Admissible Sets and Structures: An Approach to Definability Theory, Springer-Verlag, Berlin–Heidelberg–New York, 1975
[8] Yu. L. Ershov, V. G. Puzarenko, A. I. Stukachev, “$\mathbb{HF}$-Computability”, COMPUTABILITY IN CONTEXT: Computation and Logic in the Real World, eds. S. B. Cooper, A. Sorbi, Imperial College Press, Singapore, 2011, 169–242
[9] R. I. Soare, Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets, Springer-Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo, 1987
[10] Yu. L. Ershov, Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980
[11] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Nauchnaya kniga, Novosibirsk, 1999
[12] V. G. Puzarenko, “O vychislimosti nad modelyami razreshimykh teorii”, Algebra i logika, 39:2 (2000), 170–197
[13] B. F. Puzarenko, “Obobschennye numeratsii i opredelimost polya $\mathbb{R}$ v dopustimykh mnozhestvakh”, Vestnik NGU: ser. mat., mekh., inf., 2:3 (2003), 107–117
[14] A. S. Morozov, V. G. Puzarenko, “O $\Sigma$-podmnozhestvakh naturalnykh chisel”, Algebra i logika, 43:3 (2004), 291–320
[15] V. G. Puzarenko, I. Sh. Kalimullin, “O svodimosti na semeistvakh”, Algebra i logika, 48:1 (2009), 31–53
[16] J. C. Owings, “The meta r.e. sets but not the $\Pi_1^1$ sets can be enumerated without repetition”, J. Symbolic Logic, 35:2 (1970), 223–229
[17] W. Li, “Friedberg numbering in fragments of Peano arithmetics and $\alpha$-recursion theory”, J. Symbolic Logic, 78:4 (2013), 1135–1163
[18] I. Sh. Kalimullin, V. G. Puzarenko, M. Kh. Fanzrakhmanov, “Chastichnye razreshimye predstavleniya v giperarifmetike”, Sib. matem. zhurn., 60:3 (2019), 599–609
[19] I. Sh. Kalimullin, V. G. Puzarenko, M. Kh. Fanzrakhmanov, “O pozitivnykh i odnoznachnykh vychislimykh numeratsiyakh v giperarifmetike”, Algebra i logika, 59:1 (2020), 66–83
[20] M. Kh. Faizrahmanov, V. G. Puzarenko, “Absolute and relative properties of negatively-numbered families”, Lobachevskii J. Math., 42:4 (2021), 726–734