Stability of solutions of delay differential equations
Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 208-218

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we consider a class of systems of linear differential equations with infinite distributed delay and periodic coefficients. We use the Lyapunov–Krasovskii functional and obtain sufficient conditions for exponential stability of the zero solution, find conditions on perturbation of the coefficients of the system that guarantee preservation of exponential stability, and establish estimates for the norms of solutions of the initial and perturbed systems that characterize exponential decay at infinity.
@article{MT_2023_26_1_a10,
     author = {T. Yskak},
     title = {Stability of solutions of delay differential equations},
     journal = {Matemati\v{c}eskie trudy},
     pages = {208--218},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a10/}
}
TY  - JOUR
AU  - T. Yskak
TI  - Stability of solutions of delay differential equations
JO  - Matematičeskie trudy
PY  - 2023
SP  - 208
EP  - 218
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2023_26_1_a10/
LA  - ru
ID  - MT_2023_26_1_a10
ER  - 
%0 Journal Article
%A T. Yskak
%T Stability of solutions of delay differential equations
%J Matematičeskie trudy
%D 2023
%P 208-218
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2023_26_1_a10/
%G ru
%F MT_2023_26_1_a10
T. Yskak. Stability of solutions of delay differential equations. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 208-218. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a10/