To the Segal chronometric theory
Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 3-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author expounds or proves some results connected with Segal's chronometric theory. He gives short proofs of results about linear representation of the group of nondegenerate complex (2$\times$2)-matrices on the Minkowski space-time and on the universal covering of the Lie group of unitary (2$\times$2)-matrices, i.e., on the Einstein Universe, as well as about the Cayley transform of Lie algebras of Lie groups of unitary matrices into these groups. In comparison with the structure of conformal infinity for the Minkowski space, the structure of the set of unitary (2$\times$2)-matrices, which do not admit the Cayley transform, is found. Some problems are suggested.
@article{MT_2023_26_1_a0,
     author = {V. N. Berestovskii},
     title = {To the {Segal} chronometric theory},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--25},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a0/}
}
TY  - JOUR
AU  - V. N. Berestovskii
TI  - To the Segal chronometric theory
JO  - Matematičeskie trudy
PY  - 2023
SP  - 3
EP  - 25
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2023_26_1_a0/
LA  - ru
ID  - MT_2023_26_1_a0
ER  - 
%0 Journal Article
%A V. N. Berestovskii
%T To the Segal chronometric theory
%J Matematičeskie trudy
%D 2023
%P 3-25
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2023_26_1_a0/
%G ru
%F MT_2023_26_1_a0
V. N. Berestovskii. To the Segal chronometric theory. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 3-25. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a0/

[1] Berestovskii V. N., “Geodesies and curvatures of special sub-Riemnnian metrics on Lie groups”, Siber. Math. J., 59:1 (2018), 31–42

[2] Berestovskii V. N., Gichev V. M., “Metrized left invariant orders on topological groups”, St. Petersburg Math. J., 11:4 (2000), 543–565

[3] Van der Varden B. L., Algebra, Nauka, M.; Van der Waerden B.L., Algebra, v. I, Achte Auflage der Modernen Algebra, Springer-Verlag, Berlin-Heidelberg-New York, 1971; Algebra, v. II, Funfte Auflage, Springer-Verlag, Berlin-Heidelberg-New York, 1967

[4] M. A. Naimark, “Lineinye predstavleniya gruppy Lorentsa”, UMN, 9:4 (1954), 19–93

[5] Penrose R., Rindler W., Spinors and Space-Time. Spinor and Twistor Methods in Space-Time Geometry, v. 2, Cambridge University Press, Cambridge, 1986

[6] Postnikov M. M., Lie groups and Lie algebras, Semester V, Lectures in geometry, Mir Publisher, M., 1986

[7] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York–London, 1962

[8] V. Berestovskii, Yu. Nikonorov, Riemannian Manifolds and Homogeneous Geodesies, Springer Monographs in Mathematics, Springer Nature Switzerland AG, Cham, 2020

[9] A. Jadczyk, “On Conformai Infinity and Compactifications of Minkowski Space”, Adv. Appi. Clifford Algebr., 21 (2011), 721–756

[10] A. Jadczyk, “Conformally Compactified Minkowski Space: Myths and Facts”, Prespacetime Journal, 3:2 (2012), 131–140

[11] A. Jadczyk, “Geometry and Shape of Minkowski's Space Conformai Infinity”, Rep. Math. Phys., 69:2 (2012), 179–195

[12] A. Jadczyk, Quantum Fractals. From Heisenberg's Uncertainty to Barnsley's Fractality, Quantum Future Group Inc., USA. World Scientific Publishing Co. Ptl. Ltd, New Jersey-London-Singapore-Beijing-Shanghai-Hong Kong-Taipei-Chennai, 2014

[13] S. M. Paneitz, I. E. Segal, “Analysis in Space-Time Bundles I. General Considerations and the Scalar Bundle”, J. Fund. Anal., 47 (1982), 78–142

[14] I. E. Segal, Mathematical Cosmology and Extragalactic Astronomy, Academic Press, New York, 1976

[15] A. Uhlmann, “The Closure of Minkowski Space”, Acta Phys. Polon., 24:2 (8) (1963), 295–296