Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2022_25_2_a9, author = {A. G. Tumanyan}, title = {A priori estimates and {Fredholm} criteria for a class of regular hypoelliptic operators}, journal = {Matemati\v{c}eskie trudy}, pages = {220--240}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2022_25_2_a9/} }
A. G. Tumanyan. A priori estimates and Fredholm criteria for a class of regular hypoelliptic operators. Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 220-240. http://geodesic.mathdoc.fr/item/MT_2022_25_2_a9/
[1] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965
[2] Nikolskii S. M., “Pervaya kraevaya zadacha dlya odnogo obschego lineinogo uravneniya”, Dokl. AN SSSR, 146:4 (1962), 767–769 | Zbl
[3] Mikhailov V. P., “O povedenii na beskonechnosti odnogo klassa mnogochlenov”, Trudy MIAN, 91, 1967, 9–81
[4] Friberg J., “Multi-quasi-elliptic polynomials”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 21 (1967), 239–260 | MR | Zbl
[5] Volevich L. R., Gindikin S. G., The Method of Newton's Polyhedron in the Theory of Partial Differential Equations, Math. Appl., 86, Kluwer Academic, Dordrecht, 1992 | MR
[6] Bagirov L. A., “Ellipticheskie uravneniya v neogranichennoi oblasti”, Matem. Cb., 86 (1971), 121–139
[7] McOwen R. C., “On elliptic operators in $\mathbb{R}^n$”, Communications in Partial Differential Equations, 5:8 (1980), 913–933 | DOI | MR
[8] Lockhart R. B., McOwen R. C., “On elliptic systems in $\mathbb{R}^n$”, Acta Math., 150:1 (1983), 125–135 | DOI | MR | Zbl
[9] Schrohe E., “Spectral invariance, ellipticity, and the Fredholm property for pseudodifferential operators on weighted Sobolev spaces”, Ann. Global Anal. Geom., 10:3 (1992), 237–254 | DOI | MR | Zbl
[10] Bagirov L. A., “Apriornye otsenki, teoremy suschestvovaniya i povedenie na beskonechnosti reshenii kvaziellipticheskikh uravnenii v $\mathbb{R}^n$”, Matem. Cb., 110:4 (1979), 475–492 | MR | Zbl
[11] Karapetyan G. A., Darbinyan A. A., “Index of semielliptic operator in $\mathbb{R}^n$”, Proc. Nat. Acad. Sci. Armenya: Mathematics, 42:5 (2007), 33–50 | MR | Zbl
[12] Demidenko G. V., “O kvaziellipticheskikh operatorakh v $\mathbb{R}^n$”, Sib. matem. zhurn., 39:5 (1998), 1028–1037 | MR | Zbl
[13] Demidenko G. V., “Kvaziellipticheskie operatory i uravneniya sobolevskogo tipa”, Sib. matem. zhurn., 49:5 (2008), 842–851 | MR | Zbl
[14] Demidenko G. V., “Kvaziellipticheskie operatory i uravneniya, ne razreshennye otnositelno starshei proizvodnoi”, Sib. zhurn. chist. i prikl. matem., 16:3 (2016), 15–26 | Zbl
[15] Darbinyan A. A., Tumanyan A. G., “On a priori estimates and the Fredholm property of differential operators in anisotropic spaces”, J. Contemp. Math. Anal., 53:2 (2018), 61–70 | DOI | MR | Zbl
[16] Tumanyan A. G., “On the Fredholm property of semielliptic operators in anisotropic weighted spaces in $\mathbb{R}^n$”, J. Contemp. Math. Anal., 56:3 (2021), 168–181 | DOI | MR | Zbl
[17] Tumanyan A. G., “On the invariance of index of semielliptical operator on the scale of anisotropic spaces”, J. Contemp. Math. Anal., 51:4 (2016), 187–198 | DOI | MR | Zbl
[18] Darbinyan A .A., Tumanyan A .G., “On index stability of Noetherian differential operators in anisotropic Sobolev spaces”, Eurasian Math. J., 10:1 (2019), 9–15 | DOI | MR | Zbl
[19] Tumanyan A. G., “Fredholm criteria for a class of regular hypoelliptic operators in multianisotropic spaces in $\mathbb{R}^n$”, Italian J. of Pure and Appl. Math., 48:1 (2022), 1009–1028 | MR
[20] Boggiatto P., Buzano E., Rodino L., “Multi-quasi-elliptic operators in $\mathbb{R}^n$”, Partial Differential Operators and Mathematical Physics, Proceedings Holzau, Operator Theory: Advances and Applications, 78, 1995, 31–42 | MR | Zbl
[21] Edmunds D. E., Evans W. D., Spectral theory and differential operators, Oxford University Press, Oxford, 1987 | MR | Zbl
[22] Krein S. G., Lineinye uravneniya v banakhovykh prostranstvakh, Nauka, M., 1971
[23] Pehkonen E., “Ein hypoelliptisches Diriclet Problem”, Com. Mat. Phys., 48:3 (1978), 131–143 | MR | Zbl