Semantic programming and polynomially computable representations
Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 174-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we consider the question on existence of polynomially computable representations for basic syntactic constructions of the first-order logic and for objects of semantic programming (such as L-programs and L-formulas). We prove that the sets of linear or tree-like derivations in the first-order predicate calculus admits a polynomially computable representation. We also obtain a series of assertions that allow us to prove polynomial computability in a more efficient way. Among them, we mention the generalized PAG-theorem with polynomially computable initial data and an assertion on p-iterative terms with weakened estimates. Our results may be useful for construction of logical programming languages, in smart contracts, as well as for developing fast algorithms for automatic proof verification.
@article{MT_2022_25_2_a7,
     author = {A. V. Nechesov},
     title = {Semantic programming and polynomially computable representations},
     journal = {Matemati\v{c}eskie trudy},
     pages = {174--202},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2022_25_2_a7/}
}
TY  - JOUR
AU  - A. V. Nechesov
TI  - Semantic programming and polynomially computable representations
JO  - Matematičeskie trudy
PY  - 2022
SP  - 174
EP  - 202
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2022_25_2_a7/
LA  - ru
ID  - MT_2022_25_2_a7
ER  - 
%0 Journal Article
%A A. V. Nechesov
%T Semantic programming and polynomially computable representations
%J Matematičeskie trudy
%D 2022
%P 174-202
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2022_25_2_a7/
%G ru
%F MT_2022_25_2_a7
A. V. Nechesov. Semantic programming and polynomially computable representations. Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 174-202. http://geodesic.mathdoc.fr/item/MT_2022_25_2_a7/

[1] Goncharov S. S., “Uslovnye termy v semanticheskom programmirovanii”, Sib. Matem. Zhurn., 58:5 (2017), 1026–1034 | MR | Zbl

[2] Goncharov S. S.; Sviridenko D. I., “Logicheskii yazyk opisaniya polinomialnoi vychislimosti”, Dokl. RAN, 485:11 (2019), 11–14 | DOI | Zbl

[3] Ershov Yu.L., Palyutin E.A., Matematicheskaya logika, Nauka, M., 1987 | MR

[4] Nechesov A.V., “Nekotorye voprosy polinomialnykh predstavlenii dlya porozhdayuschikh grammatik i form Bekusa-Naura v semanticheskom programmirovanii”, Matem. tr., 25:1 (2022), 134–151 | MR

[5] Goncharov S.S, Nechesov A.V., “Solution of the problem P = L”, Mathematics., 10 (2022), 113 | DOI

[6] Goncharov S.S., Nechesov A.V., “Polynomial analogue of Gandy's fixed point theorem”, MDPI Mathematics, 9:17 (2021), 2102 | DOI

[7] Ershov Yu.L., Definability and Computability, Springer, Berlin–Heidelberg–New York, 1996 | MR

[8] Alaev P.E., Selivanov V.L., “Polynomial computability of fields of algebraic numbers”, Doklady Mathematics, 98:1 (2018), 341–343 | DOI | MR | Zbl

[9] Alaev P.E., “Structures Computable in Polynomial Time”, Algebra Logic, 55 (2017), 421–435 | DOI | MR | Zbl

[10] Ershov Yu.L., Goncharov S.S., and Sviridenko D.I., “Semantic programming”, Proceedings of the Information Processing 86: Proceedings of the IFIP 10th World Computer Congress, Elsevier Sci., Dublin, 1986, 1113–1120 | MR

[11] Goncharov S.S., Sviridenko D.I., “Recursive terms in semantic programming”, Siberian Math. J., 59:6 (2018), 1014–1023 | DOI | MR | Zbl

[12] Goncharov S.S., Ospichev S.S., Ponomaryov D.K., and Sviridenko D.I., “The expressiveness of looping terms in the semantic programming”, Sib. Elektron. Mat. Izv., 17 (2020), 380–394 | DOI | MR | Zbl

[13] Goncharov S.S., Sviridenko D.I., “$\Sigma$-programming”, Transl. II. Ser. Am. Math. Soc., 142 (1989), 101–121 | DOI | Zbl

[14] Ospichev S.S., Ponomaryov, D.K., “On the complexity of formulas in semantic programming”, Sib. Elektron. Mat. Izv., 15 (2018), 987–995 | MR | Zbl