Semantic programming and polynomially computable representations
Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 174-202

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we consider the question on existence of polynomially computable representations for basic syntactic constructions of the first-order logic and for objects of semantic programming (such as L-programs and L-formulas). We prove that the sets of linear or tree-like derivations in the first-order predicate calculus admits a polynomially computable representation. We also obtain a series of assertions that allow us to prove polynomial computability in a more efficient way. Among them, we mention the generalized PAG-theorem with polynomially computable initial data and an assertion on p-iterative terms with weakened estimates. Our results may be useful for construction of logical programming languages, in smart contracts, as well as for developing fast algorithms for automatic proof verification.
@article{MT_2022_25_2_a7,
     author = {A. V. Nechesov},
     title = {Semantic programming and polynomially computable representations},
     journal = {Matemati\v{c}eskie trudy},
     pages = {174--202},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2022_25_2_a7/}
}
TY  - JOUR
AU  - A. V. Nechesov
TI  - Semantic programming and polynomially computable representations
JO  - Matematičeskie trudy
PY  - 2022
SP  - 174
EP  - 202
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2022_25_2_a7/
LA  - ru
ID  - MT_2022_25_2_a7
ER  - 
%0 Journal Article
%A A. V. Nechesov
%T Semantic programming and polynomially computable representations
%J Matematičeskie trudy
%D 2022
%P 174-202
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2022_25_2_a7/
%G ru
%F MT_2022_25_2_a7
A. V. Nechesov. Semantic programming and polynomially computable representations. Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 174-202. http://geodesic.mathdoc.fr/item/MT_2022_25_2_a7/