On distance-regular graphs of diameter $3$ with eigenvalue~$0$
Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 162-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

Graph $\Gamma_i$ for a distance-regular graph $\Gamma$ of diameter $3$ can be strongly regular for $i=2$ or $i=3$. J. Koolen with coauthors found parameters of $\Gamma_2$ by the intersection array of graph $\Gamma$ (independently parameters were obtained by Makhnev A.A. and Paduchikh D.V.). In this case $\Gamma$ has eigenvalue $\theta=a_2-c_3$. In this paper it is consider graphs with eigenvalues $\theta_2=0$ and $\theta_3=a_2-c_3$. It is proved that $\Gamma$ has intersection array $\{yx+yz,yz-y,xy-x;1,x+z,yz\}$. Further if $a_2-c_3\ge -10$ then $\Gamma$ has intersection array $\{12,6,2;1,4,9\}$, $\{60,45,8;1,12,50\}$, $\{63,42,12;1,9,49\}$ or $\{72,45,16; 1,8,54\}$.
@article{MT_2022_25_2_a6,
     author = {A. A. Makhnev and I. N. Belousov},
     title = {On distance-regular graphs of diameter $3$ with eigenvalue~$0$},
     journal = {Matemati\v{c}eskie trudy},
     pages = {162--173},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2022_25_2_a6/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - I. N. Belousov
TI  - On distance-regular graphs of diameter $3$ with eigenvalue~$0$
JO  - Matematičeskie trudy
PY  - 2022
SP  - 162
EP  - 173
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2022_25_2_a6/
LA  - ru
ID  - MT_2022_25_2_a6
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A I. N. Belousov
%T On distance-regular graphs of diameter $3$ with eigenvalue~$0$
%J Matematičeskie trudy
%D 2022
%P 162-173
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2022_25_2_a6/
%G ru
%F MT_2022_25_2_a6
A. A. Makhnev; I. N. Belousov. On distance-regular graphs of diameter $3$ with eigenvalue~$0$. Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 162-173. http://geodesic.mathdoc.fr/item/MT_2022_25_2_a6/

[1] Belousov I.N., Makhnev A.A., “Distance-regular graphs with intersection arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist”, Sib. Elektron. Mat. Izv., 15 (2018), 1506–1512 | DOI | MR | Zbl

[2] Brouwer A.E., Cohen A.M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989, 495 pp. | MR | Zbl

[3] Jurishich A, Koolen J., “Nonexistence of some antipodal distance-regular graphs of diameter 4”, European J. Combin., 21 (2000), 1039–1046 | DOI | MR

[4] Iqbal Q., Koolen J.H., Park J., Rehman M.U., “Distance-regular graphs with diameter 3 and eigenvalue $a_2-c_3$”, Linear Algebra Appl, 587 (2020), 271–290 | DOI | MR | Zbl

[5] Koolen J., Park J., “Shilla distance-regular graphs”, European J. Combin, 31 (2010), 2064–2073 | DOI | MR | Zbl

[6] Makhnev A., Nirova M., “On distance-regular Shilla graphs”, Mat. Zametki, 103:4 (2018), 558–571 | MR

[7] Makhnev A.A., Paduchikh D.V., “Inverse problems in distance-regular graph theory”, Trudy IMM UrO RAN, 24, no. 4, 2018, 134–144 | MR