Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2022_25_2_a6, author = {A. A. Makhnev and I. N. Belousov}, title = {On distance-regular graphs of diameter $3$ with eigenvalue~$0$}, journal = {Matemati\v{c}eskie trudy}, pages = {162--173}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2022_25_2_a6/} }
A. A. Makhnev; I. N. Belousov. On distance-regular graphs of diameter $3$ with eigenvalue~$0$. Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 162-173. http://geodesic.mathdoc.fr/item/MT_2022_25_2_a6/
[1] Belousov I.N., Makhnev A.A., “Distance-regular graphs with intersection arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist”, Sib. Elektron. Mat. Izv., 15 (2018), 1506–1512 | DOI | MR | Zbl
[2] Brouwer A.E., Cohen A.M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989, 495 pp. | MR | Zbl
[3] Jurishich A, Koolen J., “Nonexistence of some antipodal distance-regular graphs of diameter 4”, European J. Combin., 21 (2000), 1039–1046 | DOI | MR
[4] Iqbal Q., Koolen J.H., Park J., Rehman M.U., “Distance-regular graphs with diameter 3 and eigenvalue $a_2-c_3$”, Linear Algebra Appl, 587 (2020), 271–290 | DOI | MR | Zbl
[5] Koolen J., Park J., “Shilla distance-regular graphs”, European J. Combin, 31 (2010), 2064–2073 | DOI | MR | Zbl
[6] Makhnev A., Nirova M., “On distance-regular Shilla graphs”, Mat. Zametki, 103:4 (2018), 558–571 | MR
[7] Makhnev A.A., Paduchikh D.V., “Inverse problems in distance-regular graph theory”, Trudy IMM UrO RAN, 24, no. 4, 2018, 134–144 | MR