Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2022_25_2_a5, author = {Yu. Yu. Linke}, title = {Kernel estimators for the mean function of a stochastic process under sparse design conditions}, journal = {Matemati\v{c}eskie trudy}, pages = {149--161}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2022_25_2_a5/} }
Yu. Yu. Linke. Kernel estimators for the mean function of a stochastic process under sparse design conditions. Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 149-161. http://geodesic.mathdoc.fr/item/MT_2022_25_2_a5/
[1] Linke Yu.Yu., “K voprosu o nechuvstvitelnosti otsenok Nadaraya- – Vatsona otnositelno korrelyatsii elementov dizaina // Teoriya veroyatn. i ee primen.” (to appear)
[2] Linke Yu.Yu., “Asimptoticheskie svoistva odnoshagovykh vzveshennykh M-otsenok s prilozheniyami k zadacham regressii”, Teoriya veroyatn. i ee primen., 62:3 (2017), 468–498 | DOI
[3] Linke Yu.Yu., Borisov I.S., “Postroenie yavnykh otsenok v zadachakh nelineinoi regressii”, Teoriya veroyatn. i ee primen., 63:1 (2018), 29–56 | DOI | MR | Zbl
[4] Borisov I.S., Linke Yu.Yu., Ruzankin P.S., “Universal weighted kernel-type estimators for some class of regression models”, Metrika, 61:2 (2021), 141–166 | DOI | MR
[5] Bunea F., Ivanescu A. E., Wegkamp M. H., “Adaptive inference for the mean of a Gaussian process in functional data”, J. R. Stat. Soc. Ser. B. Stat. Methodol., 73 (2011), 531–558 | DOI | MR | Zbl
[6] Cuevas A., “A partial overview of the theory of statistics with functional data”, J. Stat. Plan. Inference, 147 (2014), 1–23 | DOI | MR | Zbl
[7] James G. M., Hastie T. J., “Functional linear discriminant analysis for irregularly sampled curves”, J. R. Stat. Soc. Ser. B. Stat. Methodol., 63 (2001), 533–550 | DOI | MR | Zbl
[8] Hall P., Müller H.-G., Wang, J.-L., “Properties of principal component methods for functional and longitudinal data analysis”, Ann. Statist., 34 (2006), 1493–1517 | MR | Zbl
[9] Hsing T., Eubank R., Theoretical foundations of functional data analysis, with an introduction to linear operators, John Wiley and Sons, 2015 | MR | Zbl
[10] Kim S., Zhao Z., “Unified inference for sparse and dense longitudinal models”, Biometrika, 100:1 (2013), 203–212 | DOI | MR | Zbl
[11] Kokoszka P., Reimherr M., Introduction to functional data analysis, Chapman and Hall/CRC, 2017 | MR | Zbl
[12] Li Y., Hsing T., “Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data”, Ann. Statist., 38 (2010), 3321–3351 | MR | Zbl
[13] Lin Z., Wang J.-L., “Mean and covariance estimation for functional snippets”, J. Amer. Statist. Assoc., 117 (2022), 348–360 | DOI | MR | Zbl
[14] Linke Y., Borisov I., Ruzankin P., Kutsenko V., Yarovaya E., Shalnova S., “Universal local linear kernel estimators in nonparametric regression”, Mathematics, 10 (2022), 2693, 28 pp. | DOI
[15] Linke Yu.Yu., Borisov I.S., “Insensitivity of Nadaraya–Watson estimators to design correlation”, Communications in Statistics – Theory and Methods, 2021 | MR
[16] Linke Yu.Yu., “Asymptotic properties of one-step M-estimators”, Communications in Statistics – Theory and Methods, 48:16 (2019), 4096–4118 | DOI | MR | Zbl
[17] Linke Yu.Yu., Borisov I.S., “Constructing initial estimators in one-step estimation procedures of nonlinear regression”, Statist. Probab. Lett., 120:1 (2017), 87–94 | DOI | MR | Zbl
[18] Linke Yu.Yu., “Asymptotic normality of one-step M-estimators based on non-identically distributed observations”, Statist. Probab. Lett., 129 (2017), 216–221 | DOI | MR | Zbl
[19] Muller H.-G., “Functional modelling and classification of longitudinal data”, Scand. J. Statist., 32 (2005), 223–246 | DOI | MR
[20] Song Q., Liu R., Shao Q., Yang L., “A simultaneous confidence band for dense longitudinal regression”, Communications in Statistics - Theory and Methods, 43:24 (2014), 5195–5210 | DOI | MR | Zbl
[21] Wang J.-L., Chiou J.-M., Muller H.-G., “Review of functional data analysis”, Annu. Rev. Stat. Appl., 3 (2016), 257–295 | DOI
[22] Wu H., Zhang J.-T., Nonparametric regression methods for longitudinal data analysis: mixed-effects modeling approaches, John Wiley and Sons, 2006 | MR | Zbl
[23] Yao F., “Asymptotic distributions of nonparametric regression estimators for longitudinal or functional data”, J. Multivariate Anal., 98:1 (2007), 40–56 | DOI | MR | Zbl
[24] Yao F., Muller H.-G., Wang J.-L., “Functional data analysis for sparse longitudinal data”, J. Amer. Statist. Assoc., 100 (2005), 577–590 | DOI | MR | Zbl
[25] Zhang J.-T., Chen J., “Statistical inferences for functional data”, Ann. Statist., 35:1 (2007), 1052–1079 | MR | Zbl
[26] Zhang X., Wang J.-L., “Optimal weighting schemes for longitudinal and functional data”, Stat. Prob. Lett., 138 (2018), 165–170 | DOI | MR | Zbl
[27] Zhang X., Wang J.-L., “From sparse to dense functional data and beyond”, Ann. Statist., 44:5 (2016), 2281–2321 | MR | Zbl
[28] Zheng S., Yang L., Hardle W., “A smooth simultaneous confidence corridor for the mean of sparse functional data”, J. Amer. Statist. Assoc., 109 (2014), 661–673 | DOI | MR | Zbl
[29] Zhou L., Lin H., Liang H., “Efficient estimation of the nonparametric mean and covariance functions for longitudinal and sparse functional data”, J. Amer. Statist. Assoc., 113 (2018), 1550–1564 | DOI | MR | Zbl