Sub-riemannian properties of the level sets of noncontact mappings of Heisenberg groups
Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 107-125

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model example of noncontact mappings of Heisenberg groups where the dimension of the source space is greater than the dimension of the target space. We derive metric properties of level surfaces and prove an analog of the coarea formula.
@article{MT_2022_25_2_a3,
     author = {M. B. Karmanova},
     title = {Sub-riemannian properties of the level sets of noncontact mappings of {Heisenberg} groups},
     journal = {Matemati\v{c}eskie trudy},
     pages = {107--125},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2022_25_2_a3/}
}
TY  - JOUR
AU  - M. B. Karmanova
TI  - Sub-riemannian properties of the level sets of noncontact mappings of Heisenberg groups
JO  - Matematičeskie trudy
PY  - 2022
SP  - 107
EP  - 125
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2022_25_2_a3/
LA  - ru
ID  - MT_2022_25_2_a3
ER  - 
%0 Journal Article
%A M. B. Karmanova
%T Sub-riemannian properties of the level sets of noncontact mappings of Heisenberg groups
%J Matematičeskie trudy
%D 2022
%P 107-125
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2022_25_2_a3/
%G ru
%F MT_2022_25_2_a3
M. B. Karmanova. Sub-riemannian properties of the level sets of noncontact mappings of Heisenberg groups. Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 107-125. http://geodesic.mathdoc.fr/item/MT_2022_25_2_a3/