Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2022_25_2_a3, author = {M. B. Karmanova}, title = {Sub-riemannian properties of the level sets of noncontact mappings of {Heisenberg} groups}, journal = {Matemati\v{c}eskie trudy}, pages = {107--125}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2022_25_2_a3/} }
M. B. Karmanova. Sub-riemannian properties of the level sets of noncontact mappings of Heisenberg groups. Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 107-125. http://geodesic.mathdoc.fr/item/MT_2022_25_2_a3/
[1] Franchi B., Serapioni R., and Serra Cassano F., “Rectifiability and perimeter in the Heisenberg group”, Math. Ann., 321:1 (1971), 479–531 | MR
[2] Basalaev S. G., “Odnomernye poverkhnosti urovnya $hc$-differentsiruemykh otobrazhenii prostranstv Karno — Karateodori”, Vestn. NGU, 13:4 (2013), 16–36 | Zbl
[3] Kozhevnikov A., Propriétés métriques des ensembles de niveau des applications différentiables sur les groupes de Carnot. Géométrie métrique, Université Paris Sud, Paris, 2015
[4] Franchi B., Serapioni R., “Intrinsic Lipschitz graphs within Carnot groups”, J. Geom. Anal.., 26:3 (2016), 1946–1994 | DOI | MR | Zbl
[5] Karmanova M., “O lokalnykh metricheskikh kharakteristikakh mnozhestv urovnya $C^1_H$-otobrazhenii mnogoobrazii Karno”, Sib. matem. zhurn., 60:6 (2019), 1291–1309 | MR | Zbl
[6] Karmanova M., “Mnozhestva urovnya klassov otobrazhenii dvustupenchatykh grupp Karno v negolonomnoi interpretatsii”, Sib. matem. zhurn., 60:2 (2019), 391–400 | MR | Zbl
[7] Folland G. B., Stein E. M., Hardy spaces on homogeneous groups, Princeton Univ. Press, Princeton, 1982 | MR | Zbl
[8] Pansu P., “Métriques de Carnot–Carathéodory et quasi-isométries des espaces symétriques de rang 1”, Math. Ann., 129:1 (1989), 1–60 | DOI | MR | Zbl
[9] Vodopyanov S., “Geometry of Carnot–Carathéodory Spaces and Differentiability of Mappings”, The Interaction of Analysis and Geometry, Contemporary Mathematics, 424, Amer. Math. Soc., Providence, RI, 2007, 247–301 | DOI | MR | Zbl
[10] Karmanova M., Vodopyanov S., “A Coarea Formula for Smooth Contact Mappings of Carnot–Caratheodory Spaces”, Acta Appl. Math., 128:1 (2013), 67–111 | DOI | MR | Zbl
[11] Karmanova M., “Sublorentseva formula koploschadi dlya otobrazhenii grupp Karno”, Sib. matem. zhurn., 63:3 (2022), 587–612 | Zbl
[12] Karmanova M., “Formula koploschadi na gruppakh Karno s sublorentsevoi strukturoi dlya vektor-funktsii”, Sib. matem. zhurn., 62:2 (2021), 298–325 | Zbl
[13] Federer H., Geometric Measure Theory, Springer, New York, 1969 | MR | Zbl
[14] Vodopyanov S. K., Ukhlov A. D., “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I”, Siberian Adv. Math., 14:4 (2004), 78–125 | MR | Zbl
[15] Vodopyanov S. K., Ukhlov A. D., “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. II”, Siberian Adv. Math., 15:1 (2005), 91–125 | MR | Zbl
[16] Karmanova M., “Ploschad grafikov na proizvolnykh gruppakh Karno s sublorentsevoi strukturoi”, Sib. matem. zhurn., 61:4 (2020), 823–848 | MR | Zbl