Maximal ideal spaces of invariant function algebras on compact groups
Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 31-87

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a compact group and $A$ be a closed subalgebra of $C(G)$ which is invariant under the left and right shifts in $G$. We consider maximal ideal spaces (spectra) $\mathcal{M}_A$ of these algebras. They can be defined as closed sub-bialgebras of $C(G)$. There is a natural semigroup structure in $\mathcal{M}_A$ that admits an involutive anti-automorphism and a polar decomposition. If $\mathcal{M}_A\ne G$ then $\mathcal{M}_A$ has a nontrivial analytic structure. If $G$ is a Lie group then every idempotent in $\mathcal{M}_A$ is the identity element of a complex Lie semigroup embedded to $\mathcal{M}_A$. The semigroup $\mathcal{M}_A$ admits an analogue of Cartan's decomposition $KAK$, namely, $\mathcal{M}_A=G\widehat{T}G$, where $\widehat{T}$ is an abelian semigroup that is a hull of the maximal torus $T$.
@article{MT_2022_25_2_a1,
     author = {V. M. Gichev},
     title = {Maximal ideal spaces of invariant function algebras on compact groups},
     journal = {Matemati\v{c}eskie trudy},
     pages = {31--87},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2022_25_2_a1/}
}
TY  - JOUR
AU  - V. M. Gichev
TI  - Maximal ideal spaces of invariant function algebras on compact groups
JO  - Matematičeskie trudy
PY  - 2022
SP  - 31
EP  - 87
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2022_25_2_a1/
LA  - ru
ID  - MT_2022_25_2_a1
ER  - 
%0 Journal Article
%A V. M. Gichev
%T Maximal ideal spaces of invariant function algebras on compact groups
%J Matematičeskie trudy
%D 2022
%P 31-87
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2022_25_2_a1/
%G ru
%F MT_2022_25_2_a1
V. M. Gichev. Maximal ideal spaces of invariant function algebras on compact groups. Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 31-87. http://geodesic.mathdoc.fr/item/MT_2022_25_2_a1/