Maximal ideal spaces of invariant function algebras on compact groups
Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 31-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a compact group and $A$ be a closed subalgebra of $C(G)$ which is invariant under the left and right shifts in $G$. We consider maximal ideal spaces (spectra) $\mathcal{M}_A$ of these algebras. They can be defined as closed sub-bialgebras of $C(G)$. There is a natural semigroup structure in $\mathcal{M}_A$ that admits an involutive anti-automorphism and a polar decomposition. If $\mathcal{M}_A\ne G$ then $\mathcal{M}_A$ has a nontrivial analytic structure. If $G$ is a Lie group then every idempotent in $\mathcal{M}_A$ is the identity element of a complex Lie semigroup embedded to $\mathcal{M}_A$. The semigroup $\mathcal{M}_A$ admits an analogue of Cartan's decomposition $KAK$, namely, $\mathcal{M}_A=G\widehat{T}G$, where $\widehat{T}$ is an abelian semigroup that is a hull of the maximal torus $T$.
@article{MT_2022_25_2_a1,
     author = {V. M. Gichev},
     title = {Maximal ideal spaces of invariant function algebras on compact groups},
     journal = {Matemati\v{c}eskie trudy},
     pages = {31--87},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2022_25_2_a1/}
}
TY  - JOUR
AU  - V. M. Gichev
TI  - Maximal ideal spaces of invariant function algebras on compact groups
JO  - Matematičeskie trudy
PY  - 2022
SP  - 31
EP  - 87
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2022_25_2_a1/
LA  - ru
ID  - MT_2022_25_2_a1
ER  - 
%0 Journal Article
%A V. M. Gichev
%T Maximal ideal spaces of invariant function algebras on compact groups
%J Matematičeskie trudy
%D 2022
%P 31-87
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2022_25_2_a1/
%G ru
%F MT_2022_25_2_a1
V. M. Gichev. Maximal ideal spaces of invariant function algebras on compact groups. Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 31-87. http://geodesic.mathdoc.fr/item/MT_2022_25_2_a1/

[1] Gichev V. M., “Invariantnye algebry funktsii na gruppakh Li”, Sib. matem. zhurn., 20:1 (1979), 23–36 | MR | Zbl

[2] Gichev V. M., “O prostranstvakh maksimalnykh idealov invariantnykh algebr”, Funkts. analiz i ego pril., 13:3 (1979), 75–76 | MR | Zbl

[3] Gichev V. M., Prostranstva maksimalnykh idealov invariantnykh algebr na kompaktnykh gruppakh Li, Dep. v VINITI No 1616, 1980

[4] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, FIZMATLIT, M., 2004 | MR

[5] Rozenberg A.L., “Invariantnye algebry na kompaktnykh gruppakh”, Matem. Sb., 41:2 (1970), 176–184

[6] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[7] Arens R., Singer I. M., “Generalized analytic functions”, Trans. Amer. Mat. Soc., 81:2 (1956), 379–393 | DOI | MR | Zbl

[8] Arens R., “A Banach algebra generalization of conformal mappings of the disc”, Trans. Amer. Mat. Soc., 81 (1956), 501–513 | DOI | MR | Zbl

[9] Björk J.-E., “Compact groups operating on Banach algebras”, Math. Ann., 205:4 (1973), 281–297 | DOI | MR | Zbl

[10] Bourbaki N., Théories spectrales, Hermann, 1967

[11] Cartier P., “A Primer of Hopf Algebras”, Frontiers in Number Theory, Physics, and Geometry, v. II, eds. Cartier P., Moussa P., Julia B., Vanhove P., Springer, Berlin, 2007, 537–615 | DOI | MR | Zbl

[12] Dăscălescu S., Năstăsescu C., Raianu Ş., Hopf Algebras. An introduction, Pure Appl. Math., 235, 1st ed., Marcel Dekker, New York, 2001

[13] Gangolli R., “Invariant function algebras on compact semisimple Lie groups”, Bull. Amer. Math. Soc., 71:3 (1965), 634–637 | DOI | MR | Zbl

[14] Gamelin T., Uniform Algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969 | MR | Zbl

[15] Gichev V.M., Latypov I.A., “Polynomially Convex Orbits of Compact Lie Groups”, Transform. groups, 6:4 (2001), 321–331 | DOI | MR | Zbl

[16] Gichev V.M., “Invariant Function Algebras on Compact Commutative Homogeneous Spaces”, Mosc. Math. J., 8:4 (2008), 697–709 | DOI | MR | Zbl

[17] Glicksberg I., “Measures orthogonal to algebras and sets of antisymmetry”, Trans. Amer. Math. Soc., 105 (1962), 381–396 | DOI | MR

[18] Glicksberg I., “Spectra of invariant uniform and transform algebras”, Trans. Amer. Math. Soc., 277:1 (1983), 415–435 | DOI | MR

[19] Goldman O., “Ordered abelian groups”, Bull. Amer. Math. Soc., Abstract 58-6-574

[20] Hewitt E., Ross K.A., Abstract Harmonic Analysis, v. 2, Die Grundlehren der Matematischen Wissenschaften, 152, Springer-Verlag, Berlin, 1970 | MR

[21] Heyer H., Probability measures on locally compact groups, Springer-Verlag, Berlin–New York, 1977 | MR | Zbl

[22] Hofmann K.H., Mostert P.S., Elements of compact semigroups, Charles E. Merril Bocks, Inc, Columbus, Ohio, 1966 | MR | Zbl

[23] Hofmann K.H., Morris S.A., The structure of compact groups: a primer for the student, a handbook for the expert, De Gruyter Studies in Math., 25, Berlin, 2006 | MR | Zbl

[24] Kane J., “Maximal ideal spaces of U-algebras”, Illinois J. Math., 27:1 (1983), 1–13 | DOI | MR | Zbl

[25] Latypov I.A., “Homogeneous Spaces of Compact Connected Lie Groups which admit nontrivial Invariant Algebras”, J. Lie Theory, 9 (1999), 355–360 | MR | Zbl

[26] Leeuw K. de, Mirkil H., “Translation-invariant function algebras on abelian groups”, Bull Soc. Math. France, 88 (1960), 345–370 | DOI | MR | Zbl

[27] Leeuw K. de, Mirkil H., “Rotation-invariant algebras on the n-sphere”, Duke Math. J., 30:4 (1961), 667–672 | MR

[28] Mackey G., “The Laplace transform for locally compact abelian groups”, Proc. Nat. Acad. Sci. USA, 34 (1948), 156–162 | DOI | MR | Zbl

[29] Montgomery S., Hopf algebras and their actions on rings, Regional Conference Series in Mathematics, 82, Providence, Rhode Island, 1993 | DOI | MR | Zbl

[30] Nagel A., Rudin W., “Moebius-invariant function spaces on balls and spheres”, Duke Math. J., 43:4 (1976), 841–865 | DOI | MR | Zbl

[31] Rider D., “Translation-invariant Dirichlet algebras on compact groups”, Proc. Amer. Math. Soc., 17:5 (1966), 977–985 | DOI | MR

[32] Rockafellar R.T., Convex Analysis . Princeton Univ. Press, 1970 | MR

[33] Rudin W., “Möbius-invariant algebras in balls”, Ann. Inst. Fourier, 33:2 (1983), 19–41 | DOI | MR | Zbl

[34] Rudin W., Function Theory in the Unit Ball of ${\mathbf C}^n$, Grundlehren Math. Wiss., 241, Springer, New York, 1982 | MR

[35] Underwood R. G., An introduction to Hopf algebras, Springer-Verlag, Berlin, 2011 | MR | Zbl

[36] Wolf J., “Translation-invariant function algebras on compact groups”, Pacific J. Math., 15:3 (1965), 1093–1099 | DOI | MR | Zbl