Maximal ideal spaces of invariant function algebras on compact groups
Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 31-87
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a compact group and $A$ be a closed subalgebra of $C(G)$ which is invariant under
the left and right shifts in $G$. We consider maximal ideal spaces (spectra) $\mathcal{M}_A$ of these algebras. They
can be defined as closed sub-bialgebras of $C(G)$. There is a natural semigroup structure in $\mathcal{M}_A$ that
admits an involutive anti-automorphism and a polar decomposition. If $\mathcal{M}_A\ne G$ then $\mathcal{M}_A$ has a
nontrivial analytic structure. If $G$ is a Lie group then every idempotent in $\mathcal{M}_A$ is the identity element
of a complex Lie semigroup embedded to $\mathcal{M}_A$. The semigroup $\mathcal{M}_A$ admits an analogue of Cartan's
decomposition $KAK$, namely, $\mathcal{M}_A=G\widehat{T}G$, where $\widehat{T}$ is an abelian semigroup that is a hull of the
maximal torus $T$.
@article{MT_2022_25_2_a1,
author = {V. M. Gichev},
title = {Maximal ideal spaces of invariant function algebras on compact groups},
journal = {Matemati\v{c}eskie trudy},
pages = {31--87},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2022_25_2_a1/}
}
V. M. Gichev. Maximal ideal spaces of invariant function algebras on compact groups. Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 31-87. http://geodesic.mathdoc.fr/item/MT_2022_25_2_a1/