Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2022_25_1_a7, author = {M. Kh. Faizrahmanov}, title = {On numberings for classes of families of total functions}, journal = {Matemati\v{c}eskie trudy}, pages = {177--197}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2022_25_1_a7/} }
M. Kh. Faizrahmanov. On numberings for classes of families of total functions. Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 177-197. http://geodesic.mathdoc.fr/item/MT_2022_25_1_a7/
[1] Badaev S.A., Goncharov S.S., “O polureshetkakh Rodzhersa semeistv arifmeticheskikh mnozhestv”, Algebra i logika, 40:5 (2001), 507–522 | MR | Zbl
[2] Badaev S.A., Goncharov S.S., “Obobschenno vychislimye universalnye numeratsii”, Algebra i logika, 53:5 (2014), 555–569 | MR
[3] Goncharov S.S., Sorbi A., “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl
[4] Ershov Yu.L., “Numeratsii semeistv obscherekursivnykh funktsii”, Sib. matem. zhurn., 8:5 (1967), 1015–1025
[5] Ershov Yu.L., Teoriya numeratsii, Nauka, M., 1977 | MR
[6] Kalimullin I.Sh., Puzarenko V.G., “O svodimosti na semeistvakh”, Algebra i logika, 48:1 (2009), 31–53 | MR | Zbl
[7] Podzorov S.Yu., “O lokalnom stroenii polureshetok Rodzhersa $\Sigma^0_n$-vychislimykh numeratsii”, Algebra i logika, 44:2 (2005), 148–172 | MR | Zbl
[8] Selivanov V.L., “Dve teoremy o vychislimykh numeratsiyakh”, Algebra i logika, 15:4 (1976), 470–484 | MR | Zbl
[9] Faizrakhmanov M.Kh., “Universalnye vychislimye numeratsii konechnykh klassov semeistv totalnykh funktsii”, Izv. vuzov. Matem., 60:12 (2016), 96–100 | MR | Zbl
[10] Khutoretskii A.B., “O moschnosti verkhnei polureshetki vychislimykh numeratsii”, Algebra i logika, 10:5 (1971), 561–569 | MR
[11] Badaev S., Goncharov S., Sorbi A., “Completeness and Universality of Arithmetical Numberings”, Computability and Models, The University Series in Mathematics, Springer, Boston, 2003 | MR
[12] Cooper S.B., “Partial degrees and the density problem. Part 2: The enumeration degrees of the $\Sigma^0_2$ sets are dense”, J. Symbolic Logic, 49 (1984), 503–513 | DOI | MR | Zbl
[13] Faizrahmanov M., Kalimullin I., “The enumeration spectrum hierarchy of $n$-families”, Math. Log. Q, 62:4 (2016), 420–426 | DOI | MR | Zbl
[14] Faizrahmanov M., Kalimullin I., “The enumeration spectrum hierarchy of $\alpha$-families and Low$_{\alpha}$ degrees”, J. Univ. Comp. Sci., 22:7 (2016), 943–955 | MR
[15] Lachlan A.H., “Standard classes of recursively enumerable sets”, Z. Math. Logik Grundlagen Math., 10:1 (1964), 23–42 | DOI | MR | Zbl
[16] Odifreddi P., Classical recursion theory: The theory of functions and sets of natural number, v. 1, Elsevier, Amsterdam, 1992 | MR
[17] Soare R.I., Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets, Springer–Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo, 1987 | MR