Some questions on polynomially computable representations for generating grammars and Backus-Naur forms
Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 134-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we consider the question on modeling Backus-Naur forms (BNF-systems) and generating grammars in GNF-systems. GNF-systems serve as the base for construction of monotone operators whose least fixed points are polynomially computable. We obtain our results by construction of GNF-systems and application of a generalized polynomial analog of Gandy's fixed point theorem. This allows us to answer some questions on existence of a polynomially computable representation for the set of derivations in generating grammars. Moreover, we show that, for each GNF-system modeling a BNF-system and every nonterminal symbol in the BNF-system, the set of preimages in the GNF-system of representations of this symbol is polynomially computable. This result allows us to encode all definable constructions of the BNF-system, including the syntax of programs in high-level programming languages, so that they become recognizable in polynomial time.
@article{MT_2022_25_1_a5,
     author = {A. V. Nechesov},
     title = {Some questions on polynomially computable representations for generating grammars and {Backus-Naur} forms},
     journal = {Matemati\v{c}eskie trudy},
     pages = {134--151},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2022_25_1_a5/}
}
TY  - JOUR
AU  - A. V. Nechesov
TI  - Some questions on polynomially computable representations for generating grammars and Backus-Naur forms
JO  - Matematičeskie trudy
PY  - 2022
SP  - 134
EP  - 151
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2022_25_1_a5/
LA  - ru
ID  - MT_2022_25_1_a5
ER  - 
%0 Journal Article
%A A. V. Nechesov
%T Some questions on polynomially computable representations for generating grammars and Backus-Naur forms
%J Matematičeskie trudy
%D 2022
%P 134-151
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2022_25_1_a5/
%G ru
%F MT_2022_25_1_a5
A. V. Nechesov. Some questions on polynomially computable representations for generating grammars and Backus-Naur forms. Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 134-151. http://geodesic.mathdoc.fr/item/MT_2022_25_1_a5/

[1] Goncharov S. S., “Uslovnye termy v semanticheskom programmirovanii”, Sib. Matem. Zhurn., 58:5 (2017), 1026–1034 | MR | Zbl

[2] Goncharov S. S., Sviridenko D. I., “Rekursivnye termy v semanticheskom programmirovanii”, Sib. Mat. Zhurn., 59:6 (2018), 1279–1290 | MR | Zbl

[3] Goncharov S. S., Sviridenko D. I., “Logicheskii yazyk opisaniya polinomialnoi vychislimosti”, Dokl. RAN, 485:11 (2019), 11–14 | DOI | Zbl

[4] Ershov Yu. L., Opredelimost i vychislimost, Nauchnaya Kniga, N., 1996 | MR

[5] Testelets Ya. G., Vvedenie v obschii sintaksis. Glava XI. Porozhdayuschaya grammatika: ot pravil k ogranicheniyam, RGGU, 2001

[6] Backus J. W., “The syntax and semantics of the proposed international algebraic language of the Zurich ACM-GAMM Conference”, Proceedings of the International Conference on Information Processing, UNESCO, 1959, 125–132

[7] Backus-Naur form, Vikipediya, https://en.wikipedia.org/wiki/Backus-Naur_form

[8] Ershov Yu.L., Goncharov S.S., Sviridenko D.I., “Semantic programming”, Proceedings of the Information Processing 86: Proceedings of the IFIP 10th World Computer Congress, v. 10, Elsevier Sci., Dublin, 1986, 1113–1120 | MR

[9] Goncharov S., Nechesov A., “Polynomial analogue of Gandy's fixed point theorem”, MDPI Mathematics, 9:17 (2021), 2102 | DOI

[10] Goncharov S., Nechesov A., “Solution of the problem P = L”, MDPI Mathematics, 12:17 (2021) | DOI

[11] Goncharov S.S., Ospichev S.S., Ponomaryov D.K., Sviridenko D.I., “The expressiveness of looping terms in the semantic programming”, Sib. Electron. Math. Rep., 17 (2020), 380–394 | MR | Zbl

[12] Goncharov S.S., Sviridenko D.I., “$\Sigma$-programming”, Transl. II. Ser. Am. Math. Soc., 142 (1989), 101–121 | DOI | Zbl

[13] Ospichev S.S., Ponomaryov D.K., “On the complexity of formulas in semantic programming”, Sib. Electron. Math. Rep., 15 (2018), 987–995 | MR | Zbl