Minimal surfaces over Carnot manifolds
Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 74-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider minimal graph-surfaces constructed from contact mappings of Carnot manifolds with values in Carnot-Carathéodory spaces. We establish basic properties of these graph-surfaces and distinguish the case in which the image space is endowed with the structure of a group. It turns out that, in the non-holonomic case, the problem is well posed if certain requirements on the preimage are satisfied. We find these requirements. One of auxiliary results provides us with an explicit form of the area formula for the graph constructed from a contact mapping.
@article{MT_2022_25_1_a3,
     author = {M. B. Karmanova},
     title = {Minimal surfaces over {Carnot} manifolds},
     journal = {Matemati\v{c}eskie trudy},
     pages = {74--101},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2022_25_1_a3/}
}
TY  - JOUR
AU  - M. B. Karmanova
TI  - Minimal surfaces over Carnot manifolds
JO  - Matematičeskie trudy
PY  - 2022
SP  - 74
EP  - 101
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2022_25_1_a3/
LA  - ru
ID  - MT_2022_25_1_a3
ER  - 
%0 Journal Article
%A M. B. Karmanova
%T Minimal surfaces over Carnot manifolds
%J Matematičeskie trudy
%D 2022
%P 74-101
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2022_25_1_a3/
%G ru
%F MT_2022_25_1_a3
M. B. Karmanova. Minimal surfaces over Carnot manifolds. Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 74-101. http://geodesic.mathdoc.fr/item/MT_2022_25_1_a3/

[1] Karmanova M. B., “Svoistva minimalnykh poverkhnostei nad mnogoobraziyami Karno glubiny dva”, Sib. matem. zhurn., 62:6 (2021), 1298–1312 | Zbl

[2] Karmanova M. B., “Grafiki lipshitsevykh funktsii i minimalnye poverkhnosti na gruppakh Karno”, Sib. matem. zhurn., 53:4 (2012), 839–861 | MR | Zbl

[3] Vedenyapin A. D., Miklyukov V. M., “Vneshnie razmery trubchatykh minimalnykh giperpoverkhnostei”, Matem. sb., 131:2 (1986), 240–250 | Zbl

[4] Dao Chong Tkhi, Fomenko A. T., Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987 | MR

[5] Vedenyapin A. A., Miklyukov V. M., “Suschestvovanie reshenii s osobennostyami uravneniya maksimalnykh poverkhnostei v prostranstve Minkovskogo”, Matem. sb., 184:9 (1993), 103–124

[6] Klyachin V. A., “Maksimalnye trubchatye poverkhnosti proizvolnoi korazmernosti v prostranstve Minkovskogo”, Izv. RAN. Ser. mat., 57:4 (1993), 118–131 | Zbl

[7] Klyachin V. A., “O nekotorykh svoistvakh ustoichivykh i neustoichivykh poverkhnostei predpisannoi srednei krivizny”, Izv. RAN. Ser. mat., 70:4 (2006), 77–90 | DOI | MR | Zbl

[8] Klyachin V. A., Miklyukov V. M., “Geometrical structure of tubes and bands of zero mean curvature in Minkowski space”, Ann. Acad. Sci. Fenn. Math., 28 (2003), 239–270 | MR | Zbl

[9] A. T. Fomenko (ed.), Minimal Surfaces, Adv. Soviet Math., 15, Amer. Math. Soc., Providence, 1993

[10] Karmanova M. B., “O klassakh gelderovykh poverkhnostei na prostranstvakh Karno — Karateodori”, Sib. matem. zhurn., 60:5 (2019), 1103–1132 | MR | Zbl

[11] Basalaev S. G., Vodopyanov S. K., “Approximate differentiability of mappings of Carnot–Carathéodory spaces”, Eurasian Math. J., 4:2 (2013), 10–48 | MR | Zbl

[12] Gromov M., “Carnot–Carathéodory Spaces Seen From Within”, Sub-Riemannian geometry, Birkhäuser Verlag, Basel, 1996, 79–318 | DOI | MR

[13] Karmanova M., Vodopyanov S., “Geometry of Carnot–Carathéodory Spaces, Differentiability, Coarea and Area Formulas”, Analysis and Mathematical Physics, Birkhäuser, Basel, 2009, 233–335 | DOI | MR | Zbl

[14] Nagel A., Stein E. M., Wainger S., “Balls and metrics defined by vector fields I: Basic properties”, Acta Math., 155 (1985), 103–147 | DOI | MR | Zbl

[15] Postnikov M. M., Lectures in Geometry. Semester V: Lie Groups and Lie Algebras, Nauka, M., 1982 | MR | Zbl

[16] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer, Berlin, 2007 | MR | Zbl

[17] Karmanova M. B., “Tonkie svoistva bazisnykh vektornykh polei na prostranstvakh Karno — Karateodori v usloviyakh minimalnoi gladkosti”, Sib. matem. zhurn., 55:1 (2014), 87–99 | MR | Zbl

[18] Folland G. B., Stein E. M., Hardy spaces on homogeneous groups, Princeton Univ. Press, Princeton, 1982 | MR | Zbl

[19] Karmanova, M. B., “Formula ploschadi dlya lipshitsevykh otobrazhenii prostranstv Karno — Karateodori”, Izv. RAN. Ser. mat., 78:3 (2014), 53–78 | DOI | MR | Zbl

[20] Karmanova M. B., “Polinomialnaya subrimanova differentsiruemost na prostranstvakh Karno — Karateodori”, Sib. matem. zhurn., 59:5 (2018), 1086–1097 | MR | Zbl

[21] Karmanova M. B., “Approksimatsiya gelderovykh otobrazhenii prostranstv Karno — Karateodori”, Dokl. AN, 474:1 (2017), 5–8 | MR

[22] Vodopyanov S., “Geometry of Carnot–Carathéodory Spaces and Differentiability of Mappings”, The Interaction of Analysis and Geometry, Contemporary Mathematics, 424, Amer. Math. Soc., Providence, RI, 2007, 247–301 | DOI | MR | Zbl

[23] Karmanova M. B., “O polinomialnoi subrimanovoi differentsiruemosti nekotorykh gelderovykh otobrazhenii grupp Karno”, Sib. matem. zhurn., 58:2 (2017), 232–254 | MR | Zbl

[24] Karmanova M. B., “Formuly ploschadi dlya klassov gelderovykh otobrazhenii grupp Karno”, Sib. matem. zhurn., 58:5 (2017), 1056–1079 | MR | Zbl

[25] Karmanova M. B., “Klassy maksimalnykh poverkhnostei na gruppakh Karno”, Sib. matem. zhurn., 61:5 (2020), 1009–1026 | MR | Zbl

[26] Karmanova M. B., “Minimalnye poverkhnosti-grafiki na proizvolnykh dvustupenchatykh gruppakh Karno”, Izv. vuzov. Matematika, 2019, no. 5, 15–29 | Zbl

[27] Karmanova M., “Maximal Surfaces on Two-Step Sub-Lorentzian Structures”, Proceedings of Geometric Methods in Physics XXXVIII, Chapter 9 (June 30 – July 06, 2019, Bialowiega, Poland), Trends in Mathematics, eds. P. Kielanowski et al., Springer, Basel, 2020, 129–141 | DOI | MR