On the boundedness of the maximal and fractional maximal, potential operators in the Global Morrey-type spaces with variable exponents
Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 51-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the global Morrey-type spaces ${GM}_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$ with variable exponents $p(x)$, $\theta(x)$ and general function $w(x,r)$ defining these spaces. In the case of unbounded sets $\Omega\subset{\mathbb{R}}^{n}$, we prove boundedness of the Hardy–Littlewood maximal operator and potential type operator in these spaces. We prove Spanne-type results on the boundedness of the Riesz potential ${I}^{\alpha}$ in global Morrey-type spaces with variable exponent ${GM}_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$.
@article{MT_2022_25_1_a1,
     author = {N. A. Bokayev and Zh. M. Onerbek},
     title = {On the boundedness of the maximal and fractional maximal, potential operators in the {Global} {Morrey-type} spaces with variable exponents},
     journal = {Matemati\v{c}eskie trudy},
     pages = {51--62},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2022_25_1_a1/}
}
TY  - JOUR
AU  - N. A. Bokayev
AU  - Zh. M. Onerbek
TI  - On the boundedness of the maximal and fractional maximal, potential operators in the Global Morrey-type spaces with variable exponents
JO  - Matematičeskie trudy
PY  - 2022
SP  - 51
EP  - 62
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2022_25_1_a1/
LA  - ru
ID  - MT_2022_25_1_a1
ER  - 
%0 Journal Article
%A N. A. Bokayev
%A Zh. M. Onerbek
%T On the boundedness of the maximal and fractional maximal, potential operators in the Global Morrey-type spaces with variable exponents
%J Matematičeskie trudy
%D 2022
%P 51-62
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2022_25_1_a1/
%G ru
%F MT_2022_25_1_a1
N. A. Bokayev; Zh. M. Onerbek. On the boundedness of the maximal and fractional maximal, potential operators in the Global Morrey-type spaces with variable exponents. Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 51-62. http://geodesic.mathdoc.fr/item/MT_2022_25_1_a1/

[1] Morrey C. B., “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR | Zbl

[2] Burenkov V., Guliyev H., “Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces”, Studia Math., 163 (2004), 157–176 | DOI | MR | Zbl

[3] Burenkov V., Guliyev V., “Necessary and sufficient conditions for boundedness of the Riesz potential in the local Morrey-type spaces”, Potential Anal., 30:3 (2009), 1–39 | DOI | MR

[4] Burenkov V. I., Guliev G. V., Guliev V. S., “Neobkhodimye i dostatochnye uslovi ogranichennosti potentsiala Rissa v lokalnykh prostranstvakh tipa Morri”, Dokl. RAN, 412:5 (2007), 585–589 | Zbl

[5] Almeida A., Hasanov J., Samko S., “Maximal and potential operators in variable exponent Morrey spaces”, Georgian Math. J., 15:2 (2008), 195–208 | DOI | MR | Zbl

[6] Almeida A., Hasto P., “Besov spaces with variable smoothness and integrability”, J. Funct. Anal., 258 (2010), 1628–1655 | DOI | MR | Zbl

[7] Almeida A., Samko S., “Characterization of Riesz and Bessel potentials on variable Lebesgue spaces”, J. of Function Spaces and Appl., 4:2 (2006), 113–144 | DOI | MR | Zbl

[8] Almeida A., Samko S., “Embeddings of variable Hajlasz-Sobolev spaces into Holder spaces of variable order”, J. Math. Anal. Appl., 353 (2009), 489–496 | DOI | MR | Zbl

[9] Almeida A., Samko S., “Fractional and hypersingular operators in variable exponent spaces on metric measure spaces”, Mediterr. J. Math., 6 (2009), 215–232 | DOI | MR | Zbl

[10] Alvarez J., Perez C., “Estimates with ${A}_{\infty}$ weights for various singular integral operators”, Boll. Unione Mat. Ital., 7:8–A (1994), 123–133 | MR

[11] Guliyev V., Samko S., “Boundedness of maximal, potential type,and singular integral operators in the generalized variable exponent Morrey spaces”, J. Math. Sci., 170 (2010), 423–441 | DOI | MR

[12] Guliyev V., Samko S., “Maximal, potential, and singular operators in the generalized variable exponent Morrey spaces on unbounded sets”, J. Math. Sci., 193 (2013), 228–247 | DOI | MR

[13] Sharapudinov I. I., “O topologii prostranstva ${L}^{p(t)}([0,1])$”, Matem. zametki, 26:4 (1979), 613–632 | MR | Zbl

[14] Diening L., “Maximal function on generalized Lebesgue spaces ${L}_{p(\cdot)}$”, Math. Inequal. Appl., 7:2 (2004), 245–253 | MR | Zbl

[15] Diening L., “Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces ${L}_{p(\cdot)}$ and ${W}_{k,p(\cdot)}$”, Math. Nachr., 268 (2004), 31–43 | DOI | MR | Zbl

[16] Kokilashvili V., Samko S., “On Sobolev theorem for the Riesz type potentials in Lebesgue spaces with variable exponent”, Z. Anal. Anwend., 22:4 (2003), 899–910 | DOI | MR

[17] Edmunds D. E., Kokilashvili V., Meskhi A., “On the boundedness and compactness of weight Hardy operators in $L_p(x)$ spaces”, Georgian Math. J., 12:1 (2005), 27–44 | DOI | MR | Zbl