On the boundedness of the maximal and fractional maximal, potential operators in the Global Morrey-type spaces with variable exponents
Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 51-62
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the global Morrey-type spaces ${GM}_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$ with variable exponents $p(x)$, $\theta(x)$ and general function $w(x,r)$ defining these spaces. In the case of unbounded sets $\Omega\subset{\mathbb{R}}^{n}$, we prove boundedness of the Hardy–Littlewood maximal operator and potential type operator in these spaces. We prove Spanne-type results on the boundedness of the Riesz potential ${I}^{\alpha}$ in global Morrey-type spaces with variable exponent ${GM}_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$.
@article{MT_2022_25_1_a1,
author = {N. A. Bokayev and Zh. M. Onerbek},
title = {On the boundedness of the maximal and fractional maximal, potential operators in the {Global} {Morrey-type} spaces with variable exponents},
journal = {Matemati\v{c}eskie trudy},
pages = {51--62},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2022_25_1_a1/}
}
TY - JOUR AU - N. A. Bokayev AU - Zh. M. Onerbek TI - On the boundedness of the maximal and fractional maximal, potential operators in the Global Morrey-type spaces with variable exponents JO - Matematičeskie trudy PY - 2022 SP - 51 EP - 62 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2022_25_1_a1/ LA - ru ID - MT_2022_25_1_a1 ER -
%0 Journal Article %A N. A. Bokayev %A Zh. M. Onerbek %T On the boundedness of the maximal and fractional maximal, potential operators in the Global Morrey-type spaces with variable exponents %J Matematičeskie trudy %D 2022 %P 51-62 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2022_25_1_a1/ %G ru %F MT_2022_25_1_a1
N. A. Bokayev; Zh. M. Onerbek. On the boundedness of the maximal and fractional maximal, potential operators in the Global Morrey-type spaces with variable exponents. Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 51-62. http://geodesic.mathdoc.fr/item/MT_2022_25_1_a1/