On the boundedness of the maximal and fractional maximal, potential operators in the Global Morrey-type spaces with variable exponents
Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 51-62

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the global Morrey-type spaces ${GM}_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$ with variable exponents $p(x)$, $\theta(x)$ and general function $w(x,r)$ defining these spaces. In the case of unbounded sets $\Omega\subset{\mathbb{R}}^{n}$, we prove boundedness of the Hardy–Littlewood maximal operator and potential type operator in these spaces. We prove Spanne-type results on the boundedness of the Riesz potential ${I}^{\alpha}$ in global Morrey-type spaces with variable exponent ${GM}_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$.
@article{MT_2022_25_1_a1,
     author = {N. A. Bokayev and Zh. M. Onerbek},
     title = {On the boundedness of the maximal and fractional maximal, potential operators in the {Global} {Morrey-type} spaces with variable exponents},
     journal = {Matemati\v{c}eskie trudy},
     pages = {51--62},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2022_25_1_a1/}
}
TY  - JOUR
AU  - N. A. Bokayev
AU  - Zh. M. Onerbek
TI  - On the boundedness of the maximal and fractional maximal, potential operators in the Global Morrey-type spaces with variable exponents
JO  - Matematičeskie trudy
PY  - 2022
SP  - 51
EP  - 62
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2022_25_1_a1/
LA  - ru
ID  - MT_2022_25_1_a1
ER  - 
%0 Journal Article
%A N. A. Bokayev
%A Zh. M. Onerbek
%T On the boundedness of the maximal and fractional maximal, potential operators in the Global Morrey-type spaces with variable exponents
%J Matematičeskie trudy
%D 2022
%P 51-62
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2022_25_1_a1/
%G ru
%F MT_2022_25_1_a1
N. A. Bokayev; Zh. M. Onerbek. On the boundedness of the maximal and fractional maximal, potential operators in the Global Morrey-type spaces with variable exponents. Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 51-62. http://geodesic.mathdoc.fr/item/MT_2022_25_1_a1/