Unsaturated algorithms for the numerical solution of elliptic boundary value problems in smooth axisymmetric domains
Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 3-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

A fundamentally new —unsaturated — method for the numerical solution of the Laplace equation in smooth axisymmetric domains of sufficiently arbitrary shape is constructed based on the boundary integral equation. A distinctive feature of the method is — the absence of the principal value of error $O(m^{-r})$ ($r>2$ — fixed integer), and as a result — the ability to automatically adjust to any excess (extraordinary) reserves of smoothness of the sought solutions to problems. The method endows computer practice with a new computing tool capable in a discretized form to inherit both differential and spectral characteristics of the operator of the elliptic problem under study. This makes it possible to effectively take into account the axisymmetric specifics of the problem, which is a “stumbling block” for any numerical methods with a major error term. The result obtained is of fundamental interest, because in the case of $C^{ \infty}$-smooth solutions, a computer numerical answer is constructed (up to a slowly growing multiplier) with an absolutely unimproved exponential error estimate. The unimprovability of the estimate is due to the asymptotics of the Alexandrovsky $m$-diameter of the compact $C^{ \infty}$-smooth functions containing the exact solution of the problem. This asymptotic also has the form of exponential decreasing to zero (with the growth of the whole parameter $m$).
@article{MT_2022_25_1_a0,
     author = {V. N. Belykh},
     title = {Unsaturated algorithms for the numerical solution of elliptic boundary value problems in smooth axisymmetric domains},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--50},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2022_25_1_a0/}
}
TY  - JOUR
AU  - V. N. Belykh
TI  - Unsaturated algorithms for the numerical solution of elliptic boundary value problems in smooth axisymmetric domains
JO  - Matematičeskie trudy
PY  - 2022
SP  - 3
EP  - 50
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2022_25_1_a0/
LA  - ru
ID  - MT_2022_25_1_a0
ER  - 
%0 Journal Article
%A V. N. Belykh
%T Unsaturated algorithms for the numerical solution of elliptic boundary value problems in smooth axisymmetric domains
%J Matematičeskie trudy
%D 2022
%P 3-50
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2022_25_1_a0/
%G ru
%F MT_2022_25_1_a0
V. N. Belykh. Unsaturated algorithms for the numerical solution of elliptic boundary value problems in smooth axisymmetric domains. Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 3-50. http://geodesic.mathdoc.fr/item/MT_2022_25_1_a0/

[1] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979

[2] Algazin S. D., “O lokalizatsii sobstvennykh znachenii zamknutykh lineinykh operatorov”, Sib. matem. zhurn., 24:2 (1983), 3–8 | Zbl

[3] Algazin S. D., Kiiko I. A., Flatter plastin i obolochek, Nauka, M., 2006

[4] Anuchina N. N., Babenko K. I., Godunov S. K. i dr., Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov zadach matematicheskoi fiziki, Nauka, M., 1977 | MR

[5] Babenko K. I., “O priblizhenii periodicheskikh funktsii mnogikh peremennykh trigonometricheskimi mnogochlenami”, Dokl. AN SSSR, 132:2 (1960), 247–250 | MR | Zbl

[6] Babenko K. I., “O priblizhenii odnogo klassa periodicheskikh funktsii mnogikh peremennykh trigonometricheskimi mnogochlenami”, Dokl. AN SSSR, 132:5 (1960), 982–985 | Zbl

[7] Babenko K. I., “Neskolko zamechanii o priblizhenii funktsii mnogikh peremennykh”, Mat. sb., 86:4 (1971), 499–517 | Zbl

[8] Babenko K. I., Ob odnom podkhode k otsenke kachestva vychislitelnykh algoritmov, Preprint No 7, IPM im. M. V. Keldysha AN SSSR, M., 1974

[9] Babenko K. I., Stebunov V. A., O spektralnoi zadache Orra-Zommerfelda, Preprint No 93, IPM im. M. V. Keldysha AN SSSR, M., 1975

[10] Babenko K. I., Petrovich V. Yu., O dokazatelnykh vychisleniyakh na EVM, Preprint No 133, IPM im. M. V. Keldysha AN SSSR, M., 1983

[11] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986; 2-е издание, РХД, М.-Ижевск, 2002

[12] Belykh V. N., “K probleme obtekaniya osesimmetrichnykh tel bolshogo udlineniya potokom idealnoi neszhimaemoi zhidkosti”, Prikl. mekhan. i tekhn. fizika, 47:5 (2006), 56–67 | MR | Zbl

[13] Belykh V. N., “Algoritmy vychisleniya polnykh ellipticheskikh integralov i nekotorykh svyazannykh s nimi funktsii”, Sib. zhurn. industr. matematiki, 15:2 (2012), 21–32 | MR | Zbl

[14] Belykh V. N., “K probleme chislennoi realizatsii integralnykh operatorov osesimmetrichnykh kraevykh zadach (algoritmy bez nasyscheniya)”, Ufim. matem. zhurn., 4:4 (2012), 22–37 http://matem.anrb.ru/sites/default/files/files/vup16/Belykh.pdf | MR

[15] Belykh V. N., “Ob evolyutsii konechnogo ob'ema idealnoi neszhimaemoi zhidkosti so svobodnoi poverkhnostyu”, Dokl. RAN, 473:6 (2017), 650–654 | DOI | MR

[16] Belykh V. N., “K probleme konstruirovaniya nenasyschaemykh kvadraturnykh formul na otrezke”, Matem. sb., 210:1 (2019), 27–62 | DOI | MR | Zbl

[17] Belykh V. N., “O probleme chislennoi realizatsii nestatsionarnykh osesimmetrichnykh zadach idealnoi neszhimaemoi zhidkosti so svobodnoi poverkhnostyu”, Prikl. mekhan. i tekhn. fizika, 60:2 (2019), 226–237 | DOI | Zbl

[18] Belykh V. N., “Cverkhskhodyaschiesya algoritmy chislennogo resheniya ellipticheskikh kraevykh zadach (k probleme K. I. Babenko)”, Mezhdunarodnaya nauchnaya konferentsiya “Analiticheskie i chislennye metody resheniya zadach gidrodinamiki, matematicheskoi fiziki i biologii, posvyaschennaya 100-letiyu K. I. Babenko”, Tez. dokl. (Moskva–Puschino, 2019), 37 http://agora.guru.ru/display.php?conf=babenko | Zbl

[19] Belykh V. N., “Sverkhskhodyaschiesya algoritmy chislennogo resheniya uravneniya Laplasa v gladkikh osesimmetrichnykh oblastyakh”, Zhurn. vychisl. matematiki i mat. fiziki, 60:4 (2020), 553–566 | DOI | Zbl

[20] Vaskevich V. L., Garantirovannaya tochnost vychisleniya mnogomernykh integralov, Dis. ...dokt. fiz.-mat. nauk, Novosibirsk, 2003

[21] Garkavi A. L., “O sovmestnom priblizhenii periodicheskoi funktsii i ee proizvodnykh trigonometricheskimi polinomami”, Izvestiya AN SSSR. Seriya matematicheskaya, 24:1 (1960), 103–128 | Zbl

[22] Godunov S. K., Antonov A. G., Kirilyuk O. P., Kostin V. I., Garantirovannaya tochnost resheniya sistem lineinykh uravnenii v evklidovykh prostranstvakh, VO “Nauka”, Novosibirsk, 1992 | MR

[23] Godunov S. K., Lektsii po sovremennym aspektam lineinoi algebry, Nauchnaya kniga (IDMI), Novosibirsk, 2002

[24] Gyunter N. M., Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, Gostekhteoretizdat, M., 1953 | MR

[25] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR

[26] Kazandzhan E. P., Ob odnom chislennom metode konformnogo otobrazheniya odnosvyaznykh oblastei, Preprint No 82, IPM im. M. V. Keldysha AN SSSR, M., 1975

[27] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[28] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1978

[29] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962 | MR

[30] Nikolskii S. M., “Priblizhenie na mnogoobrazii algebraicheskimi mnogochlenami”, Trudy MIAN, 210, 1995, 189–217 | Zbl

[31] Ramazanov M. D., “Asimptoticheski optimalnye reshetchatye kubaturnye formuly s ogranichennym pogranichnym sloem i svoistvom nenasyschaemosti”, Matem. sb., 204:7 (2013), 71–96 | DOI | MR | Zbl

[32] Sobolev S. L., “Nekotorye zamechaniya o chislennom reshenii integralnykh uravnenii”, Izv. AN SSSR. Seriya matematicheskaya, 20:4 (1956), 413–436 | Zbl

[33] Babenko K. I., “Estimating the quality of computational algorithms — part 1, 2”, Comput. Methods Appl. Mech. Engrg. North-Holland Publishing Company, 7 (1976), 47–73 ; 135–152 | DOI | MR | Zbl | Zbl

[34] Belykh V. N., “Numerical Solution of the Axisymmetric Dirichlet-Neumann Problem for Laplace's Equation (Algorithms Without Saturation)”, Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy, eds. G. V. Demidenko et al., Springer Nature Switzerland AG, Cham; Springer, 2020, 13–20 | DOI | MR

[35] Marcinkiewicz I., “Sur l'interpolation”, Studia Math., 6 (1936), 1–17 | DOI | Zbl

[36] Nikolskii S. M., “Approximation on manifolds”, East. J. Approx., 1:1 (1995), 1–24 | MR | Zbl

[37] Sinwel H. F., “Uniform approximation of differentiable functions by algebraic polynomials”, J. Approx. Theory, 32:1 (1981), 1–8 | DOI | MR | Zbl

[38] Tadmor E., “The exponential accuracy of Fourier and Chebyshev differencing methods”, SIAM J. Numer. Anal., 23 (1986), 1–10 | DOI | MR | Zbl

[39] Tee T.-W. and Trefethen L. N., “A rational spectral collocation method with adaptively transformed Chebyshev grid points”, SIAM J. Sci. Comput., 28:5 (2006), 1798–1811 | DOI | MR | Zbl

[40] Zamansky M., “Classes de saturation des procedes de sommation des series de Fourier et applications aux series trigonometriques”, Ann. Sci. Ecole Norm. Sup., 67:3 (1950), 161–198 | DOI | MR | Zbl