Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2022_25_1_a0, author = {V. N. Belykh}, title = {Unsaturated algorithms for the numerical solution of elliptic boundary value problems in smooth axisymmetric domains}, journal = {Matemati\v{c}eskie trudy}, pages = {3--50}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2022_25_1_a0/} }
TY - JOUR AU - V. N. Belykh TI - Unsaturated algorithms for the numerical solution of elliptic boundary value problems in smooth axisymmetric domains JO - Matematičeskie trudy PY - 2022 SP - 3 EP - 50 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2022_25_1_a0/ LA - ru ID - MT_2022_25_1_a0 ER -
V. N. Belykh. Unsaturated algorithms for the numerical solution of elliptic boundary value problems in smooth axisymmetric domains. Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 3-50. http://geodesic.mathdoc.fr/item/MT_2022_25_1_a0/
[1] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979
[2] Algazin S. D., “O lokalizatsii sobstvennykh znachenii zamknutykh lineinykh operatorov”, Sib. matem. zhurn., 24:2 (1983), 3–8 | Zbl
[3] Algazin S. D., Kiiko I. A., Flatter plastin i obolochek, Nauka, M., 2006
[4] Anuchina N. N., Babenko K. I., Godunov S. K. i dr., Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov zadach matematicheskoi fiziki, Nauka, M., 1977 | MR
[5] Babenko K. I., “O priblizhenii periodicheskikh funktsii mnogikh peremennykh trigonometricheskimi mnogochlenami”, Dokl. AN SSSR, 132:2 (1960), 247–250 | MR | Zbl
[6] Babenko K. I., “O priblizhenii odnogo klassa periodicheskikh funktsii mnogikh peremennykh trigonometricheskimi mnogochlenami”, Dokl. AN SSSR, 132:5 (1960), 982–985 | Zbl
[7] Babenko K. I., “Neskolko zamechanii o priblizhenii funktsii mnogikh peremennykh”, Mat. sb., 86:4 (1971), 499–517 | Zbl
[8] Babenko K. I., Ob odnom podkhode k otsenke kachestva vychislitelnykh algoritmov, Preprint No 7, IPM im. M. V. Keldysha AN SSSR, M., 1974
[9] Babenko K. I., Stebunov V. A., O spektralnoi zadache Orra-Zommerfelda, Preprint No 93, IPM im. M. V. Keldysha AN SSSR, M., 1975
[10] Babenko K. I., Petrovich V. Yu., O dokazatelnykh vychisleniyakh na EVM, Preprint No 133, IPM im. M. V. Keldysha AN SSSR, M., 1983
[11] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986; 2-е издание, РХД, М.-Ижевск, 2002
[12] Belykh V. N., “K probleme obtekaniya osesimmetrichnykh tel bolshogo udlineniya potokom idealnoi neszhimaemoi zhidkosti”, Prikl. mekhan. i tekhn. fizika, 47:5 (2006), 56–67 | MR | Zbl
[13] Belykh V. N., “Algoritmy vychisleniya polnykh ellipticheskikh integralov i nekotorykh svyazannykh s nimi funktsii”, Sib. zhurn. industr. matematiki, 15:2 (2012), 21–32 | MR | Zbl
[14] Belykh V. N., “K probleme chislennoi realizatsii integralnykh operatorov osesimmetrichnykh kraevykh zadach (algoritmy bez nasyscheniya)”, Ufim. matem. zhurn., 4:4 (2012), 22–37 http://matem.anrb.ru/sites/default/files/files/vup16/Belykh.pdf | MR
[15] Belykh V. N., “Ob evolyutsii konechnogo ob'ema idealnoi neszhimaemoi zhidkosti so svobodnoi poverkhnostyu”, Dokl. RAN, 473:6 (2017), 650–654 | DOI | MR
[16] Belykh V. N., “K probleme konstruirovaniya nenasyschaemykh kvadraturnykh formul na otrezke”, Matem. sb., 210:1 (2019), 27–62 | DOI | MR | Zbl
[17] Belykh V. N., “O probleme chislennoi realizatsii nestatsionarnykh osesimmetrichnykh zadach idealnoi neszhimaemoi zhidkosti so svobodnoi poverkhnostyu”, Prikl. mekhan. i tekhn. fizika, 60:2 (2019), 226–237 | DOI | Zbl
[18] Belykh V. N., “Cverkhskhodyaschiesya algoritmy chislennogo resheniya ellipticheskikh kraevykh zadach (k probleme K. I. Babenko)”, Mezhdunarodnaya nauchnaya konferentsiya “Analiticheskie i chislennye metody resheniya zadach gidrodinamiki, matematicheskoi fiziki i biologii, posvyaschennaya 100-letiyu K. I. Babenko”, Tez. dokl. (Moskva–Puschino, 2019), 37 http://agora.guru.ru/display.php?conf=babenko | Zbl
[19] Belykh V. N., “Sverkhskhodyaschiesya algoritmy chislennogo resheniya uravneniya Laplasa v gladkikh osesimmetrichnykh oblastyakh”, Zhurn. vychisl. matematiki i mat. fiziki, 60:4 (2020), 553–566 | DOI | Zbl
[20] Vaskevich V. L., Garantirovannaya tochnost vychisleniya mnogomernykh integralov, Dis. ...dokt. fiz.-mat. nauk, Novosibirsk, 2003
[21] Garkavi A. L., “O sovmestnom priblizhenii periodicheskoi funktsii i ee proizvodnykh trigonometricheskimi polinomami”, Izvestiya AN SSSR. Seriya matematicheskaya, 24:1 (1960), 103–128 | Zbl
[22] Godunov S. K., Antonov A. G., Kirilyuk O. P., Kostin V. I., Garantirovannaya tochnost resheniya sistem lineinykh uravnenii v evklidovykh prostranstvakh, VO “Nauka”, Novosibirsk, 1992 | MR
[23] Godunov S. K., Lektsii po sovremennym aspektam lineinoi algebry, Nauchnaya kniga (IDMI), Novosibirsk, 2002
[24] Gyunter N. M., Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, Gostekhteoretizdat, M., 1953 | MR
[25] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR
[26] Kazandzhan E. P., Ob odnom chislennom metode konformnogo otobrazheniya odnosvyaznykh oblastei, Preprint No 82, IPM im. M. V. Keldysha AN SSSR, M., 1975
[27] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR
[28] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1978
[29] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962 | MR
[30] Nikolskii S. M., “Priblizhenie na mnogoobrazii algebraicheskimi mnogochlenami”, Trudy MIAN, 210, 1995, 189–217 | Zbl
[31] Ramazanov M. D., “Asimptoticheski optimalnye reshetchatye kubaturnye formuly s ogranichennym pogranichnym sloem i svoistvom nenasyschaemosti”, Matem. sb., 204:7 (2013), 71–96 | DOI | MR | Zbl
[32] Sobolev S. L., “Nekotorye zamechaniya o chislennom reshenii integralnykh uravnenii”, Izv. AN SSSR. Seriya matematicheskaya, 20:4 (1956), 413–436 | Zbl
[33] Babenko K. I., “Estimating the quality of computational algorithms — part 1, 2”, Comput. Methods Appl. Mech. Engrg. North-Holland Publishing Company, 7 (1976), 47–73 ; 135–152 | DOI | MR | Zbl | Zbl
[34] Belykh V. N., “Numerical Solution of the Axisymmetric Dirichlet-Neumann Problem for Laplace's Equation (Algorithms Without Saturation)”, Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy, eds. G. V. Demidenko et al., Springer Nature Switzerland AG, Cham; Springer, 2020, 13–20 | DOI | MR
[35] Marcinkiewicz I., “Sur l'interpolation”, Studia Math., 6 (1936), 1–17 | DOI | Zbl
[36] Nikolskii S. M., “Approximation on manifolds”, East. J. Approx., 1:1 (1995), 1–24 | MR | Zbl
[37] Sinwel H. F., “Uniform approximation of differentiable functions by algebraic polynomials”, J. Approx. Theory, 32:1 (1981), 1–8 | DOI | MR | Zbl
[38] Tadmor E., “The exponential accuracy of Fourier and Chebyshev differencing methods”, SIAM J. Numer. Anal., 23 (1986), 1–10 | DOI | MR | Zbl
[39] Tee T.-W. and Trefethen L. N., “A rational spectral collocation method with adaptively transformed Chebyshev grid points”, SIAM J. Sci. Comput., 28:5 (2006), 1798–1811 | DOI | MR | Zbl
[40] Zamansky M., “Classes de saturation des procedes de sommation des series de Fourier et applications aux series trigonometriques”, Ann. Sci. Ecole Norm. Sup., 67:3 (1950), 161–198 | DOI | MR | Zbl