Zero-One law for the rates of convergence in the Birkhoff ergodic theorem with continuous time
Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 65-80

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider monotone pointwise estimates of the rates of convergence in the Birkhoff ergodic theorem with continuous time. For an ergodic semiflow in a Lebesgue space, we prove that such estimates hold either on a null or full measure set. It is shown that monotone estimates that are true almost everywhere always exist. We study the lattice of such estimates and also consider some questions on their unimprovability.
@article{MT_2021_24_2_a4,
     author = {A. G. Kachurovskii and I. V. Podvigin and A. A. Svishchev},
     title = {Zero-One law for the rates of convergence in the {Birkhoff} ergodic theorem with continuous time},
     journal = {Matemati\v{c}eskie trudy},
     pages = {65--80},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2021_24_2_a4/}
}
TY  - JOUR
AU  - A. G. Kachurovskii
AU  - I. V. Podvigin
AU  - A. A. Svishchev
TI  - Zero-One law for the rates of convergence in the Birkhoff ergodic theorem with continuous time
JO  - Matematičeskie trudy
PY  - 2021
SP  - 65
EP  - 80
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2021_24_2_a4/
LA  - ru
ID  - MT_2021_24_2_a4
ER  - 
%0 Journal Article
%A A. G. Kachurovskii
%A I. V. Podvigin
%A A. A. Svishchev
%T Zero-One law for the rates of convergence in the Birkhoff ergodic theorem with continuous time
%J Matematičeskie trudy
%D 2021
%P 65-80
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2021_24_2_a4/
%G ru
%F MT_2021_24_2_a4
A. G. Kachurovskii; I. V. Podvigin; A. A. Svishchev. Zero-One law for the rates of convergence in the Birkhoff ergodic theorem with continuous time. Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 65-80. http://geodesic.mathdoc.fr/item/MT_2021_24_2_a4/