Zero-One law for the rates of convergence in the Birkhoff ergodic theorem with continuous time
Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 65-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider monotone pointwise estimates of the rates of convergence in the Birkhoff ergodic theorem with continuous time. For an ergodic semiflow in a Lebesgue space, we prove that such estimates hold either on a null or full measure set. It is shown that monotone estimates that are true almost everywhere always exist. We study the lattice of such estimates and also consider some questions on their unimprovability.
@article{MT_2021_24_2_a4,
     author = {A. G. Kachurovskii and I. V. Podvigin and A. A. Svishchev},
     title = {Zero-One law for the rates of convergence in the {Birkhoff} ergodic theorem with continuous time},
     journal = {Matemati\v{c}eskie trudy},
     pages = {65--80},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2021_24_2_a4/}
}
TY  - JOUR
AU  - A. G. Kachurovskii
AU  - I. V. Podvigin
AU  - A. A. Svishchev
TI  - Zero-One law for the rates of convergence in the Birkhoff ergodic theorem with continuous time
JO  - Matematičeskie trudy
PY  - 2021
SP  - 65
EP  - 80
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2021_24_2_a4/
LA  - ru
ID  - MT_2021_24_2_a4
ER  - 
%0 Journal Article
%A A. G. Kachurovskii
%A I. V. Podvigin
%A A. A. Svishchev
%T Zero-One law for the rates of convergence in the Birkhoff ergodic theorem with continuous time
%J Matematičeskie trudy
%D 2021
%P 65-80
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2021_24_2_a4/
%G ru
%F MT_2021_24_2_a4
A. G. Kachurovskii; I. V. Podvigin; A. A. Svishchev. Zero-One law for the rates of convergence in the Birkhoff ergodic theorem with continuous time. Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 65-80. http://geodesic.mathdoc.fr/item/MT_2021_24_2_a4/

[1] Gaposhkin V. F., “O skorosti ubyvaniya veroyatnostei $\varepsilon$-uklonenii srednikh statsionarnykh protsessov”, Matem. zametki, 64:3 (1998), 366–372 | Zbl

[2] Kachurovskii A. G., “Skorosti skhodimosti v ergodicheskikh teoremakh”, UMN, 51:4 (1996), 73–124 | Zbl

[3] Kachurovskii A. G., Podvigin I. V., “Bolshie ukloneniya i skorosti skhodimosti v ergodicheskoi teoreme Birkgofa”, Matem. zametki, 94:4 (2013), 569–577 | Zbl

[4] Kachurovskii A. G., Podvigin I. V., “Otsenki skorostei skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa”, Trudy MMO, 77, no. 1, 2016, 1–66 | Zbl

[5] Kachurovskii A. G., Podvigin I. V., “Ob izmerenii skorostei skhodimosti v ergodicheskoi teoreme Birkgofa”, Matem. zametki, 106:1 (2019), 40–52 | Zbl

[6] Kachurovskii A. G., Podvigin I. V., Svischëv A. A., “Maksimalnaya potochechnaya skorost skhodimosti v ergodicheskoi teoreme Birkgofa”, Zap. nauchn. sem. POMI, 498, 2020, 18–25

[7] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya Teoriya, Nauka, M., 1980

[8] Podvigin I. V., “O skorosti skhodimosti v individualnoi ergodicheskoi teoreme dlya deistvii polugrupp”, Matem. tr., 18:2 (2015), 93–111 | Zbl

[9] Rokhlin V. A., “Ob osnovnykh ponyatiyakh teorii mery”, Matem. sb., 25(67):1 (1949), 107–150 | Zbl

[10] Rokhlin V. A., “Tochnye endomorfizmy prostranstva Lebega”, Izv. AN SSSR. Ser. matem., 25:4 (1961), 499–530 | Zbl

[11] Sedalischev V. V., “Konstanty otsenok skorosti skhodimosti v ergodicheskoi teoreme Birkgofa s nepreryvnym vremenem”, Sib. matem. zhurn., 53:5 (2012), 1102–1110

[12] Sedalischev V. V., “Svyaz skorostei skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa v $L_p$”, Sib. matem. zhurn., 55:2 (2014), 412–426

[13] Shneiberg I. Ya., “Nuli integralov vdol traektorii ergodicheskikh sistem”, Funkts. analiz i ego pril., 19:2 (1985), 92–93 | Zbl

[14] Athreya J. S., Forni G., “Deviation of ergodic averages for rational polygonal billiards”, Duke Math. J., 144:2 (2008), 285–319 | DOI | Zbl

[15] Bezuglyi S., Jorgensen P. E. T., Transfer Operators, Endomorphisms, and Measurable Partitions, Lecture Notes in Math., 2217, Springer, Cham, 2018 | DOI | Zbl

[16] Bufetov A., “Limit theorems for translation flows”, Ann. of Math., 179 (2014), 431–499 | DOI | Zbl

[17] Burger M., “Horocycle flow on geometrically finite surfaces”, Duke Math. J., 61:3 (1990), 779–803 | DOI | Zbl

[18] Cohen G., Lin M., “Laws of large numbers with rates and the one-sided ergodic Hilbert transform”, Illinois J. Math., 47:4 (2003), 997–1031 | DOI | Zbl

[19] Flaminio L., Forni G., “Invariant distributions and time averages for horocycle flows”, Duke Math. J., 119 (2003), 465–526 | DOI | Zbl

[20] Forni G., “Deviation of ergodic averages for area-preserving flows on surfaces of higher genus”, Ann. of Math., 155 (2002), 1–103 | DOI | Zbl

[21] Krengel U., Ergodic Theorems, de Gruyter Studies in Mathematics, 6, Walter de Gruyter Co, Berlin, 1985 | Zbl

[22] Krengel U., Lin M., “On the range of the generator of a Markovian semigroup”, Math. Zeit., 185 (1984), 553–565 | DOI | Zbl

[23] Lin C.-H. and Rudolph D., “Sections for semiflows and Kakutani shift equivalence”, Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004, 145–162

[24] Margulis G., “Problems and conjectures in rigidity theory”, Mathematics: Frontiers and Perspectives, Amer. Math. Soc., Providence, RI, 2000, 161–174 | Zbl

[25] Podvigin I. V., “Lower bound of the supremum of ergodic averages for $\mathbb{Z}^d$ and $\mathbb{R}^d$-actions”, SEMR, 17 (2020), 626–636 | Zbl

[26] Qian M., Xie J.-S., Zhu S., Smooth Ergodic Theory for Endomorphisms, Lecture Notes in Math., 1978, Springer-Verlag, Berlin, 2009 | DOI | Zbl

[27] Ratner M., “Rigidity of time changes for horocycle flows”, Acta Math., 156 (1986), 1–32 | DOI | Zbl

[28] Strömbergsson A., “On the deviation of ergodic averages for horocycle flows”, J. Mod. Dyn., 7:2 (2013), 291–328 | DOI | Zbl