Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2021_24_2_a4, author = {A. G. Kachurovskii and I. V. Podvigin and A. A. Svishchev}, title = {Zero-One law for the rates of convergence in the {Birkhoff} ergodic theorem with continuous time}, journal = {Matemati\v{c}eskie trudy}, pages = {65--80}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2021_24_2_a4/} }
TY - JOUR AU - A. G. Kachurovskii AU - I. V. Podvigin AU - A. A. Svishchev TI - Zero-One law for the rates of convergence in the Birkhoff ergodic theorem with continuous time JO - Matematičeskie trudy PY - 2021 SP - 65 EP - 80 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2021_24_2_a4/ LA - ru ID - MT_2021_24_2_a4 ER -
%0 Journal Article %A A. G. Kachurovskii %A I. V. Podvigin %A A. A. Svishchev %T Zero-One law for the rates of convergence in the Birkhoff ergodic theorem with continuous time %J Matematičeskie trudy %D 2021 %P 65-80 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2021_24_2_a4/ %G ru %F MT_2021_24_2_a4
A. G. Kachurovskii; I. V. Podvigin; A. A. Svishchev. Zero-One law for the rates of convergence in the Birkhoff ergodic theorem with continuous time. Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 65-80. http://geodesic.mathdoc.fr/item/MT_2021_24_2_a4/
[1] Gaposhkin V. F., “O skorosti ubyvaniya veroyatnostei $\varepsilon$-uklonenii srednikh statsionarnykh protsessov”, Matem. zametki, 64:3 (1998), 366–372 | Zbl
[2] Kachurovskii A. G., “Skorosti skhodimosti v ergodicheskikh teoremakh”, UMN, 51:4 (1996), 73–124 | Zbl
[3] Kachurovskii A. G., Podvigin I. V., “Bolshie ukloneniya i skorosti skhodimosti v ergodicheskoi teoreme Birkgofa”, Matem. zametki, 94:4 (2013), 569–577 | Zbl
[4] Kachurovskii A. G., Podvigin I. V., “Otsenki skorostei skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa”, Trudy MMO, 77, no. 1, 2016, 1–66 | Zbl
[5] Kachurovskii A. G., Podvigin I. V., “Ob izmerenii skorostei skhodimosti v ergodicheskoi teoreme Birkgofa”, Matem. zametki, 106:1 (2019), 40–52 | Zbl
[6] Kachurovskii A. G., Podvigin I. V., Svischëv A. A., “Maksimalnaya potochechnaya skorost skhodimosti v ergodicheskoi teoreme Birkgofa”, Zap. nauchn. sem. POMI, 498, 2020, 18–25
[7] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya Teoriya, Nauka, M., 1980
[8] Podvigin I. V., “O skorosti skhodimosti v individualnoi ergodicheskoi teoreme dlya deistvii polugrupp”, Matem. tr., 18:2 (2015), 93–111 | Zbl
[9] Rokhlin V. A., “Ob osnovnykh ponyatiyakh teorii mery”, Matem. sb., 25(67):1 (1949), 107–150 | Zbl
[10] Rokhlin V. A., “Tochnye endomorfizmy prostranstva Lebega”, Izv. AN SSSR. Ser. matem., 25:4 (1961), 499–530 | Zbl
[11] Sedalischev V. V., “Konstanty otsenok skorosti skhodimosti v ergodicheskoi teoreme Birkgofa s nepreryvnym vremenem”, Sib. matem. zhurn., 53:5 (2012), 1102–1110
[12] Sedalischev V. V., “Svyaz skorostei skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa v $L_p$”, Sib. matem. zhurn., 55:2 (2014), 412–426
[13] Shneiberg I. Ya., “Nuli integralov vdol traektorii ergodicheskikh sistem”, Funkts. analiz i ego pril., 19:2 (1985), 92–93 | Zbl
[14] Athreya J. S., Forni G., “Deviation of ergodic averages for rational polygonal billiards”, Duke Math. J., 144:2 (2008), 285–319 | DOI | Zbl
[15] Bezuglyi S., Jorgensen P. E. T., Transfer Operators, Endomorphisms, and Measurable Partitions, Lecture Notes in Math., 2217, Springer, Cham, 2018 | DOI | Zbl
[16] Bufetov A., “Limit theorems for translation flows”, Ann. of Math., 179 (2014), 431–499 | DOI | Zbl
[17] Burger M., “Horocycle flow on geometrically finite surfaces”, Duke Math. J., 61:3 (1990), 779–803 | DOI | Zbl
[18] Cohen G., Lin M., “Laws of large numbers with rates and the one-sided ergodic Hilbert transform”, Illinois J. Math., 47:4 (2003), 997–1031 | DOI | Zbl
[19] Flaminio L., Forni G., “Invariant distributions and time averages for horocycle flows”, Duke Math. J., 119 (2003), 465–526 | DOI | Zbl
[20] Forni G., “Deviation of ergodic averages for area-preserving flows on surfaces of higher genus”, Ann. of Math., 155 (2002), 1–103 | DOI | Zbl
[21] Krengel U., Ergodic Theorems, de Gruyter Studies in Mathematics, 6, Walter de Gruyter Co, Berlin, 1985 | Zbl
[22] Krengel U., Lin M., “On the range of the generator of a Markovian semigroup”, Math. Zeit., 185 (1984), 553–565 | DOI | Zbl
[23] Lin C.-H. and Rudolph D., “Sections for semiflows and Kakutani shift equivalence”, Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004, 145–162
[24] Margulis G., “Problems and conjectures in rigidity theory”, Mathematics: Frontiers and Perspectives, Amer. Math. Soc., Providence, RI, 2000, 161–174 | Zbl
[25] Podvigin I. V., “Lower bound of the supremum of ergodic averages for $\mathbb{Z}^d$ and $\mathbb{R}^d$-actions”, SEMR, 17 (2020), 626–636 | Zbl
[26] Qian M., Xie J.-S., Zhu S., Smooth Ergodic Theory for Endomorphisms, Lecture Notes in Math., 1978, Springer-Verlag, Berlin, 2009 | DOI | Zbl
[27] Ratner M., “Rigidity of time changes for horocycle flows”, Acta Math., 156 (1986), 1–32 | DOI | Zbl
[28] Strömbergsson A., “On the deviation of ergodic averages for horocycle flows”, J. Mod. Dyn., 7:2 (2013), 291–328 | DOI | Zbl