Two-sided estimates of norms of a class of matrix operators
Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 37-45
Voir la notice de l'article provenant de la source Math-Net.Ru
In the article, we establish necessary and sufficient conditions for the validity of a discrete Hardy type inequality $$ \left(\sum\limits_{n=1}^{\infty}|(Af)_n|^q\right)^{\frac{1}{q}} \le C\left(\sum\limits_{k=1}^{\infty}|f_k|^p\right)^{\frac{1}{p}} $$ for one class of matrix operators $$(Af)_n=\sum\limits_{k=1}^{n}a_{n,k}f_k, n\ge 1,$$ for $1$.
@article{MT_2021_24_2_a2,
author = {A. A. Kalybay},
title = {Two-sided estimates of norms of a class of matrix operators},
journal = {Matemati\v{c}eskie trudy},
pages = {37--45},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2021_24_2_a2/}
}
A. A. Kalybay. Two-sided estimates of norms of a class of matrix operators. Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 37-45. http://geodesic.mathdoc.fr/item/MT_2021_24_2_a2/