Completely reducible factors of harmonic polynomials of three variables
Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 24-36

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the divisors of complex valued homogeneous harmonic polynomials on $\mathbb R^{3}$ which are products of linear forms and characterize the homogeneous polynomials $p$ that admit a couple of linear forms $\ell_{1}$ and $\ell_{2}$ such that $\ell_{1}^{m}p$ and $\ell_{2}^{m}p$ are harmonic for some $m\in\mathbb N$. The latter gives an example of a pair of spherical harmonics whose set of common zeros has length that is compatible with the upper bound of this quantity for a single harmonic.
@article{MT_2021_24_2_a1,
     author = {V. M. Gichev},
     title = {Completely reducible factors of harmonic polynomials of three variables},
     journal = {Matemati\v{c}eskie trudy},
     pages = {24--36},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2021_24_2_a1/}
}
TY  - JOUR
AU  - V. M. Gichev
TI  - Completely reducible factors of harmonic polynomials of three variables
JO  - Matematičeskie trudy
PY  - 2021
SP  - 24
EP  - 36
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2021_24_2_a1/
LA  - ru
ID  - MT_2021_24_2_a1
ER  - 
%0 Journal Article
%A V. M. Gichev
%T Completely reducible factors of harmonic polynomials of three variables
%J Matematičeskie trudy
%D 2021
%P 24-36
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2021_24_2_a1/
%G ru
%F MT_2021_24_2_a1
V. M. Gichev. Completely reducible factors of harmonic polynomials of three variables. Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 24-36. http://geodesic.mathdoc.fr/item/MT_2021_24_2_a1/