Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2019_22_2_a9, author = {Yu. L. Trakhinin}, title = {Local existence of contact discontinuities in relativistic magnetohydrodynamics}, journal = {Matemati\v{c}eskie trudy}, pages = {175--209}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2019_22_2_a9/} }
Yu. L. Trakhinin. Local existence of contact discontinuities in relativistic magnetohydrodynamics. Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 175-209. http://geodesic.mathdoc.fr/item/MT_2019_22_2_a9/
[1] Blokhin A. M., Druzhinin I. Yu., “Korrektnost nekotorykh lineinykh zadach ob ustoichivosti silnykh razryvov v magnitnoi gidrodinamike”, Sib. matem. zhurn., 31:2 (1990), 3–8 | MR | Zbl
[2] Blokhin A. M., Trakhinin Yu. L., Ustoichivost silnykh razryvov v magnitnoi gidrodinamike i elektrogidrodinamike, Institut kompyuternykh issledovanii, M.–Izhevsk, 2004
[3] Volpert A. I., Khudyaev S. I., “O zadachi Koshi dlya sostavnykh sistem nelineinykh differentsialnykh uravnenii”, Matem. sb., 87:4 (1972), 504–528 | Zbl
[4] Godunov S. K., “Simmetricheskaya forma uravnenii magnitnoi gidrodinamiki”, Chislennye metody mekhaniki sploshnoi sredy, 3:1 (1972), 26–34
[5] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR
[6] Alinhac S., “Existence d'ondes de raréfaction pour des systèmes quasilinéaires hyperboliques multidimensionnels”, Comm. Partial Differential Equations, 14:2 (1989), 173–230 | DOI | MR | Zbl
[7] Anile A. M., Relativistic Fluids and Magneto-Fluids with Applications in Astrophysics and Plasma Physics, Cambridge Univ. Press, Cambridge, 1989 | Zbl
[8] Anile A. M. and Pennisi S., “On the mathematical structure of test relativistic magnetofluiddynamics”, Ann. Inst. H. Poincaré, Phys. Theór., 46:1 (1987), 27–44 | MR | Zbl
[9] Antón L., Miralles J. A., Martí J. M., Ibáñez J. M., Miguel A. A., Mimica P., “Relativistic magnetohydrodynamics: renormalized eigenvectors and full wave decomposition Riemann solver”, Astrophys. J., Suppl. Ser., 188:1 (2010), 1–31 | DOI | MR
[10] Ebin D., “The equations of motion of a perfect fluid with free boundary are not well-posed”, Comm. Partial Differential Equations, 12:10 (1987), 1175–1201 | DOI | MR | Zbl
[11] Freistühler H., Trakhinin Y., “Symmetrizations of RMHD equations in terms of primitive variables and their application to relativistic current-vortex sheets”, Classical Quantum Gravity, 30:8 (2013), 085012 | DOI | MR | Zbl
[12] Goedbloed J. P., Keppens R., Poedts S., Advanced Magnetohydrodynamics: with Applications to Laboratory and Astrophysical Plasmas, Cambridge Univ. Press, Cambridge, UK, 2010
[13] Guo Y., Tice I., “Compressible, inviscid Rayleigh–Taylor instability”, Indiana Univ. Math. J., 60:2 (2011), 677–711 | DOI | MR
[14] Joseph D. D., Saut J.-C., “Short-wave instabilities and ill-posed initial-value problems”, Theor. Comp. Fluid Dyn., 1:4 (1990), 191–227 | DOI | MR | Zbl
[15] Kato T., “The Cauchy problem for quasi-linear symmetric hyperbolic systems”, Arch. Rational Mech. Anal., 58:3 (1975), 181–205 | DOI | MR | Zbl
[16] Lichnerowicz A., Relativistic Hydrodynamics and Magnetohydrodynamics, Lectures on the Existence of Solutions, Benjamin, Inc., New York–Amsterdam, 1967 | Zbl
[17] Morando A., Trakhinin Y., Trebeschi P., “Well-posedness of the linearized problem for MHD contact discontinuities”, J. Differential Equations, 258:7 (2015), 2531–2571 | DOI | MR | Zbl
[18] Morando A., Trakhinin Y., Trebeschi P., “Local existence of MHD contact discontinuities”, Arch. Rational Mech. Anal., 228:7 (2018), 691–742 | DOI | MR | Zbl
[19] Ruggeri T., Strumia A., “Convex covariant entropy density, symmetric conservative form, and shock waves in relativistic magnetohydrodynamics”, J. Math. Phys., 22:8 (1981), 1824–1827 | DOI | MR | Zbl
[20] Secchi P., “On the Nash–Moser iteration technique”, Recent Developments of Mathematical Fluid Mechanics, Advances in Mathematical Fluid Mechanics, eds. H. Amann et al., Springer, Basel, 2016, 443–457 | DOI | MR | Zbl
[21] Secchi P., Trakhinin Y., “Well-posedness of the plasma-vacuum interface problem”, Nonlinearity, 27:1 (2014), 105–169 | DOI | MR | Zbl
[22] Trakhinin Y., “On stability of shock waves in relativistic magnetohydrodynamics”, Quart. Appl. Math., 59:1 (2001), 25–45 | DOI | MR | Zbl
[23] Trakhinin Y., “A complete 2D stability analysis of fast MHD shocks in an ideal gas”, Comm. Math. Phys., 236:1 (2003), 65–92 | DOI | MR | Zbl
[24] Trakhinin Y., “On existence of compressible current-vortex sheets: Variable coefficients linear analysis”, Arch. Rational Mech. Anal., 177:3 (2005), 331–366 | DOI | MR | Zbl
[25] Trakhinin Y., “The existence of current-vortex sheets in ideal compressible magnetohydrodynamics”, Arch. Rational Mech. Anal., 191:2 (2009), 245–310 | DOI | MR | Zbl
[26] Trakhinin Y., “Local existence for the free boundary problem for nonrelativistic and relativistic compressible Euler equations with a vacuum boundary condition”, Comm. Pure Appl. Math., 62:11 (2009), 1551–1594 | DOI | MR | Zbl
[27] Trakhinin Y., “On the well-posedness of a linearized plasma-vacuum interface problem in ideal compressible MHD”, J. Differential Equations, 249:10 (2010), 2577–2599 | DOI | MR | Zbl
[28] Trakhinin Y., “On well-posedness of the plasma-vacuum interface problem: The case of non-elliptic interface symbol”, Comm. Pure Appl. Anal., 15:4 (2016), 1371–1399 | DOI | MR | Zbl