Local existence of contact discontinuities in relativistic magnetohydrodynamics
Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 175-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the free boundary problem for a contact discontinuity for the system of relativistic magnetohydrodynamics. A surface of contact discontinuity is a characteristic of this system with no flow across the discontinuity for which the pressure, the velocity and the magnetic field are continuous whereas the density, the entropy and the temperature may have a jump. For the two-dimensional case, we prove the local-in-time existence in Sobolev spaces of a unique solution of the free boundary problem provided that the Rayleigh–Taylor sign condition on the jump of the normal derivative of the pressure is satisfied at each point of the initial discontinuity.
@article{MT_2019_22_2_a9,
     author = {Yu. L. Trakhinin},
     title = {Local existence of contact discontinuities in relativistic magnetohydrodynamics},
     journal = {Matemati\v{c}eskie trudy},
     pages = {175--209},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2019_22_2_a9/}
}
TY  - JOUR
AU  - Yu. L. Trakhinin
TI  - Local existence of contact discontinuities in relativistic magnetohydrodynamics
JO  - Matematičeskie trudy
PY  - 2019
SP  - 175
EP  - 209
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2019_22_2_a9/
LA  - ru
ID  - MT_2019_22_2_a9
ER  - 
%0 Journal Article
%A Yu. L. Trakhinin
%T Local existence of contact discontinuities in relativistic magnetohydrodynamics
%J Matematičeskie trudy
%D 2019
%P 175-209
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2019_22_2_a9/
%G ru
%F MT_2019_22_2_a9
Yu. L. Trakhinin. Local existence of contact discontinuities in relativistic magnetohydrodynamics. Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 175-209. http://geodesic.mathdoc.fr/item/MT_2019_22_2_a9/

[1] Blokhin A. M., Druzhinin I. Yu., “Korrektnost nekotorykh lineinykh zadach ob ustoichivosti silnykh razryvov v magnitnoi gidrodinamike”, Sib. matem. zhurn., 31:2 (1990), 3–8 | MR | Zbl

[2] Blokhin A. M., Trakhinin Yu. L., Ustoichivost silnykh razryvov v magnitnoi gidrodinamike i elektrogidrodinamike, Institut kompyuternykh issledovanii, M.–Izhevsk, 2004

[3] Volpert A. I., Khudyaev S. I., “O zadachi Koshi dlya sostavnykh sistem nelineinykh differentsialnykh uravnenii”, Matem. sb., 87:4 (1972), 504–528 | Zbl

[4] Godunov S. K., “Simmetricheskaya forma uravnenii magnitnoi gidrodinamiki”, Chislennye metody mekhaniki sploshnoi sredy, 3:1 (1972), 26–34

[5] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR

[6] Alinhac S., “Existence d'ondes de raréfaction pour des systèmes quasilinéaires hyperboliques multidimensionnels”, Comm. Partial Differential Equations, 14:2 (1989), 173–230 | DOI | MR | Zbl

[7] Anile A. M., Relativistic Fluids and Magneto-Fluids with Applications in Astrophysics and Plasma Physics, Cambridge Univ. Press, Cambridge, 1989 | Zbl

[8] Anile A. M. and Pennisi S., “On the mathematical structure of test relativistic magnetofluiddynamics”, Ann. Inst. H. Poincaré, Phys. Theór., 46:1 (1987), 27–44 | MR | Zbl

[9] Antón L., Miralles J. A., Martí J. M., Ibáñez J. M., Miguel A. A., Mimica P., “Relativistic magnetohydrodynamics: renormalized eigenvectors and full wave decomposition Riemann solver”, Astrophys. J., Suppl. Ser., 188:1 (2010), 1–31 | DOI | MR

[10] Ebin D., “The equations of motion of a perfect fluid with free boundary are not well-posed”, Comm. Partial Differential Equations, 12:10 (1987), 1175–1201 | DOI | MR | Zbl

[11] Freistühler H., Trakhinin Y., “Symmetrizations of RMHD equations in terms of primitive variables and their application to relativistic current-vortex sheets”, Classical Quantum Gravity, 30:8 (2013), 085012 | DOI | MR | Zbl

[12] Goedbloed J. P., Keppens R., Poedts S., Advanced Magnetohydrodynamics: with Applications to Laboratory and Astrophysical Plasmas, Cambridge Univ. Press, Cambridge, UK, 2010

[13] Guo Y., Tice I., “Compressible, inviscid Rayleigh–Taylor instability”, Indiana Univ. Math. J., 60:2 (2011), 677–711 | DOI | MR

[14] Joseph D. D., Saut J.-C., “Short-wave instabilities and ill-posed initial-value problems”, Theor. Comp. Fluid Dyn., 1:4 (1990), 191–227 | DOI | MR | Zbl

[15] Kato T., “The Cauchy problem for quasi-linear symmetric hyperbolic systems”, Arch. Rational Mech. Anal., 58:3 (1975), 181–205 | DOI | MR | Zbl

[16] Lichnerowicz A., Relativistic Hydrodynamics and Magnetohydrodynamics, Lectures on the Existence of Solutions, Benjamin, Inc., New York–Amsterdam, 1967 | Zbl

[17] Morando A., Trakhinin Y., Trebeschi P., “Well-posedness of the linearized problem for MHD contact discontinuities”, J. Differential Equations, 258:7 (2015), 2531–2571 | DOI | MR | Zbl

[18] Morando A., Trakhinin Y., Trebeschi P., “Local existence of MHD contact discontinuities”, Arch. Rational Mech. Anal., 228:7 (2018), 691–742 | DOI | MR | Zbl

[19] Ruggeri T., Strumia A., “Convex covariant entropy density, symmetric conservative form, and shock waves in relativistic magnetohydrodynamics”, J. Math. Phys., 22:8 (1981), 1824–1827 | DOI | MR | Zbl

[20] Secchi P., “On the Nash–Moser iteration technique”, Recent Developments of Mathematical Fluid Mechanics, Advances in Mathematical Fluid Mechanics, eds. H. Amann et al., Springer, Basel, 2016, 443–457 | DOI | MR | Zbl

[21] Secchi P., Trakhinin Y., “Well-posedness of the plasma-vacuum interface problem”, Nonlinearity, 27:1 (2014), 105–169 | DOI | MR | Zbl

[22] Trakhinin Y., “On stability of shock waves in relativistic magnetohydrodynamics”, Quart. Appl. Math., 59:1 (2001), 25–45 | DOI | MR | Zbl

[23] Trakhinin Y., “A complete 2D stability analysis of fast MHD shocks in an ideal gas”, Comm. Math. Phys., 236:1 (2003), 65–92 | DOI | MR | Zbl

[24] Trakhinin Y., “On existence of compressible current-vortex sheets: Variable coefficients linear analysis”, Arch. Rational Mech. Anal., 177:3 (2005), 331–366 | DOI | MR | Zbl

[25] Trakhinin Y., “The existence of current-vortex sheets in ideal compressible magnetohydrodynamics”, Arch. Rational Mech. Anal., 191:2 (2009), 245–310 | DOI | MR | Zbl

[26] Trakhinin Y., “Local existence for the free boundary problem for nonrelativistic and relativistic compressible Euler equations with a vacuum boundary condition”, Comm. Pure Appl. Math., 62:11 (2009), 1551–1594 | DOI | MR | Zbl

[27] Trakhinin Y., “On the well-posedness of a linearized plasma-vacuum interface problem in ideal compressible MHD”, J. Differential Equations, 249:10 (2010), 2577–2599 | DOI | MR | Zbl

[28] Trakhinin Y., “On well-posedness of the plasma-vacuum interface problem: The case of non-elliptic interface symbol”, Comm. Pure Appl. Anal., 15:4 (2016), 1371–1399 | DOI | MR | Zbl