Local existence of contact discontinuities in relativistic magnetohydrodynamics
Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 175-209

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the free boundary problem for a contact discontinuity for the system of relativistic magnetohydrodynamics. A surface of contact discontinuity is a characteristic of this system with no flow across the discontinuity for which the pressure, the velocity and the magnetic field are continuous whereas the density, the entropy and the temperature may have a jump. For the two-dimensional case, we prove the local-in-time existence in Sobolev spaces of a unique solution of the free boundary problem provided that the Rayleigh–Taylor sign condition on the jump of the normal derivative of the pressure is satisfied at each point of the initial discontinuity.
@article{MT_2019_22_2_a9,
     author = {Yu. L. Trakhinin},
     title = {Local existence of contact discontinuities in relativistic magnetohydrodynamics},
     journal = {Matemati\v{c}eskie trudy},
     pages = {175--209},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2019_22_2_a9/}
}
TY  - JOUR
AU  - Yu. L. Trakhinin
TI  - Local existence of contact discontinuities in relativistic magnetohydrodynamics
JO  - Matematičeskie trudy
PY  - 2019
SP  - 175
EP  - 209
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2019_22_2_a9/
LA  - ru
ID  - MT_2019_22_2_a9
ER  - 
%0 Journal Article
%A Yu. L. Trakhinin
%T Local existence of contact discontinuities in relativistic magnetohydrodynamics
%J Matematičeskie trudy
%D 2019
%P 175-209
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2019_22_2_a9/
%G ru
%F MT_2019_22_2_a9
Yu. L. Trakhinin. Local existence of contact discontinuities in relativistic magnetohydrodynamics. Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 175-209. http://geodesic.mathdoc.fr/item/MT_2019_22_2_a9/