Exact asymptotics for the~distribution of the~time of attaining the~maximum for a~trajectory of a~compound Poisson process with linear drift
Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 134-156
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the random process $at-\nu_+(pt)+\nu_-(-qt)$, $ t\in(-\infty,\infty)$, where $\nu_-$ and $\nu_+$ are independent standard Poisson processes if $t\geq 0$ and $\nu_-(t)=\nu_+(t)=0$ if $t0$. Under certain conditions on the parameters $a$, $p$, and $q$, we study the distribution function $G=G(x)$ of the time of attaining the maximum for a trajectory of this process. In the present article, we find an exact asymptotics for the tails of $G$. We also find a connection between this problem and the statistical problem of estimation of an unknown discontinuity point of a density function.
@article{MT_2019_22_2_a7,
author = {V. E. Mosyagin},
title = {Exact asymptotics for the~distribution of the~time of attaining the~maximum for a~trajectory of a~compound {Poisson} process with linear drift},
journal = {Matemati\v{c}eskie trudy},
pages = {134--156},
publisher = {mathdoc},
volume = {22},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2019_22_2_a7/}
}
TY - JOUR AU - V. E. Mosyagin TI - Exact asymptotics for the~distribution of the~time of attaining the~maximum for a~trajectory of a~compound Poisson process with linear drift JO - Matematičeskie trudy PY - 2019 SP - 134 EP - 156 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2019_22_2_a7/ LA - ru ID - MT_2019_22_2_a7 ER -
%0 Journal Article %A V. E. Mosyagin %T Exact asymptotics for the~distribution of the~time of attaining the~maximum for a~trajectory of a~compound Poisson process with linear drift %J Matematičeskie trudy %D 2019 %P 134-156 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2019_22_2_a7/ %G ru %F MT_2019_22_2_a7
V. E. Mosyagin. Exact asymptotics for the~distribution of the~time of attaining the~maximum for a~trajectory of a~compound Poisson process with linear drift. Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 134-156. http://geodesic.mathdoc.fr/item/MT_2019_22_2_a7/