Exact asymptotics for the~distribution of the~time of attaining the~maximum for a~trajectory of a~compound Poisson process with linear drift
Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 134-156

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the random process $at-\nu_+(pt)+\nu_-(-qt)$, $ t\in(-\infty,\infty)$, where $\nu_-$ and $\nu_+$ are independent standard Poisson processes if $t\geq 0$ and $\nu_-(t)=\nu_+(t)=0$ if $t0$. Under certain conditions on the parameters $a$, $p$, and $q$, we study the distribution function $G=G(x)$ of the time of attaining the maximum for a trajectory of this process. In the present article, we find an exact asymptotics for the tails of $G$. We also find a connection between this problem and the statistical problem of estimation of an unknown discontinuity point of a density function.
@article{MT_2019_22_2_a7,
     author = {V. E. Mosyagin},
     title = {Exact asymptotics for the~distribution of the~time of attaining the~maximum for a~trajectory of a~compound {Poisson} process with linear drift},
     journal = {Matemati\v{c}eskie trudy},
     pages = {134--156},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2019_22_2_a7/}
}
TY  - JOUR
AU  - V. E. Mosyagin
TI  - Exact asymptotics for the~distribution of the~time of attaining the~maximum for a~trajectory of a~compound Poisson process with linear drift
JO  - Matematičeskie trudy
PY  - 2019
SP  - 134
EP  - 156
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2019_22_2_a7/
LA  - ru
ID  - MT_2019_22_2_a7
ER  - 
%0 Journal Article
%A V. E. Mosyagin
%T Exact asymptotics for the~distribution of the~time of attaining the~maximum for a~trajectory of a~compound Poisson process with linear drift
%J Matematičeskie trudy
%D 2019
%P 134-156
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2019_22_2_a7/
%G ru
%F MT_2019_22_2_a7
V. E. Mosyagin. Exact asymptotics for the~distribution of the~time of attaining the~maximum for a~trajectory of a~compound Poisson process with linear drift. Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 134-156. http://geodesic.mathdoc.fr/item/MT_2019_22_2_a7/