Construction and investigation of exact solutions with free boundary to a~nonlinear heat equation with source
Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 54-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the construction and investigation of exact solutions with free boundary to a second-order nonlinear parabolic equation. The solutions belong to the classes of generalized self-similar and generalized traveling waves. Their construction is reduced to Cauchy problems for second-order ordinary differential equations (ODE), for which we prove existence and uniqueness theorems for their solutions. A qualitative analysis of the ODE is carried out by passing to a dynamical system and constructing and studying its phase portrait. In addition, we present geometric illustrations.
@article{MT_2019_22_2_a3,
     author = {A. L. Kazakov},
     title = {Construction and investigation of exact solutions with free boundary to a~nonlinear heat equation with source},
     journal = {Matemati\v{c}eskie trudy},
     pages = {54--75},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2019_22_2_a3/}
}
TY  - JOUR
AU  - A. L. Kazakov
TI  - Construction and investigation of exact solutions with free boundary to a~nonlinear heat equation with source
JO  - Matematičeskie trudy
PY  - 2019
SP  - 54
EP  - 75
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2019_22_2_a3/
LA  - ru
ID  - MT_2019_22_2_a3
ER  - 
%0 Journal Article
%A A. L. Kazakov
%T Construction and investigation of exact solutions with free boundary to a~nonlinear heat equation with source
%J Matematičeskie trudy
%D 2019
%P 54-75
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2019_22_2_a3/
%G ru
%F MT_2019_22_2_a3
A. L. Kazakov. Construction and investigation of exact solutions with free boundary to a~nonlinear heat equation with source. Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 54-75. http://geodesic.mathdoc.fr/item/MT_2019_22_2_a3/

[1] Barenblatt G. I., Entov V. M., Ryzhik V. M., Teoriya nestatsionarnoi filtratsii zhidkosti i gaza, Nedra, M., 1972

[2] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1990

[3] Vragov V. N., Kraevye zadachi dlya neklassicheskikh uravnenii matematicheskoi fiziki, Izd-vo NGU, Novosibirsk, 1983

[4] Demidenko G. V., “Kvaziellipticheskie operatory i uravneniya sobolevskogo tipa”, Sib. matem. zhurn., 49:5 (2008), 1064–1076 | MR | Zbl

[5] Zeldovich Ya. B., Kompaneets A. S., “K teorii rasprostraneniya tepla pri teploprovodnosti, zavisyaschei ot temperatury”, Sbornik, posvyaschennyi 70-letiyu A. F. Ioffe, Izd-vo AN SSSR, M., 1950, 61–71

[6] Kazakov A. L., Kuznetsov P. A., “Ob odnoi kraevoi zadache dlya nelineinogo uravneniya teploprovodnosti v sluchae dvukh prostranstvennykh peremennykh”, Sib. zhurn. industr. matem., 17:1(57) (2014), 46–54 | MR | Zbl

[7] Kazakov A. L., Kuznetsov P. A., “Ob analiticheskikh resheniyakh odnoi spetsialnoi kraevoi zadachi dlya nelineinogo uravneniya teploprovodnosti v polyarnykh koordinatakh”, Sib. zhurn. industr. matem., 21:2(74) (2018), 56–65 | Zbl

[8] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “Ob odnoi kraevoi zadache s vyrozhdeniem dlya nelineinogo uravneniya teploprovodnosti v sfericheskikh koordinatakh”, Tr. IMM UrO RAN, 20, no. 1, 2014, 119–129

[9] Kazakov A. L., Lempert A. A., “O suschestvovanii i edinstvennosti kraevoi zadachi dlya parabolicheskogo uravneniya nestatsionarnoi filtratsii”, Prikl. mekh. i tekhn. fiz., 54:2 (2013), 97–105 | MR | Zbl

[10] Kazakov A. L., Orlov Sv. S., “O nekotorykh tochnykh resheniyakh nelineinogo uravneniya teploprovodnosti”, Tr. IMM UrO RAN, 22, no. 1, 2016, 112–123

[11] Kazakov A. L., Orlov Sv. S., Orlov C. C., “Postroenie i issledovanie nekotorykh tochnykh reshenii nelineinogo uravneniya teploprovodnosti”, Sib. matem. zhurn., 59:3 (2018), 544–560 | MR | Zbl

[12] Kozhanov A. I., Pinigina N. R., “Kraevye zadachi dlya nekotorykh klassov uravnenii sostavnogo tipa vysokogo poryadka”, Sib. elektron. matem. izv., 12 (2015), 842–853 | Zbl

[13] Korotkii A. I., Starodubtseva Yu. V., Modelirovanie pryamykh i obratnykh granichnykh zadach dlya statsionarnykh modelei teplomassoperenosa, Izd-vo Ural. un-ta, Ekaterinburg, 2015

[14] Kudryashov N. A., Sinelschikov D. I., “Analiticheskie resheniya nelineinogo uravneniya konvektsii-diffuzii s nelineinymi istochnikami”, Modelir. i anal. inf. sistem, 23:3 (2016), 309–316

[15] Maslov V. P., Danilov V. G., Volosov K. A., Matematicheskoe modelirovanie protsessov teplomassoperenosa. Evolyutsiya dissipativnykh struktur, Nauka, M., 1987

[16] Polyanin A. D., Zaitsev V. F., Zhurov A. I., Nelineinye uravneniya matematicheskoi fiziki i mekhaniki. Metody resheniya, Izd-vo Yurait, M., 2017

[17] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[18] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[19] Sidorov A. F., Izbrannye trudy: Matematika. Mekhanika, Fizmatlit, M., 2001 | MR

[20] Demidenko G. V., “Quasielliptic operators and equations not solvable with respect to the higher order derivative”, J. Math. Sci. (United States), 230:1 (2018), 25–35 | MR

[21] Demidenko G. V., Uspenskii S. V., Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York–Basel, 2003 | MR | Zbl

[22] Kazakov A. L., Spevak L. F., “Numerical and analytical studies of a nonlinear parabolic equation with boundary conditions of a special form”, Appl. Math. Modelling, 37:10–11 (2013), 6918–6928 | DOI | MR | Zbl

[23] Kazakov A. L., Spevak L. F., “An analytical and numerical study of a nonlinear parabolic equation with degeneration for the cases of circular and spherical symmetry”, Appl. Math. Modelling, 40:2 (2016), 1333–1343 | DOI | MR

[24] Olver P. J., “Direct reduction and differential constraints”, Proc. Roy. Soc. Lond. Ser. A, 444:1922 (1994), 509–523 | DOI | MR | Zbl

[25] Vazquez J. L., The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, 2007 | MR