On $\mathbb R$-linear problem and truncated Wiener--Hopf equation
Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 21-33

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the $\mathbb R$-linear problem (also known as the Markushevich problem and the generalized Riemann boundary value problem) and the convolution integral equation of the second kind on a finite interval (also known as the truncated Wiener–Hopf equation). We find new conditions for correct solvability of the $\mathbb R$-linear problem and the truncated Wiener–Hopf equation.
@article{MT_2019_22_2_a1,
     author = {A. F. Voronin},
     title = {On $\mathbb R$-linear problem and truncated {Wiener--Hopf} equation},
     journal = {Matemati\v{c}eskie trudy},
     pages = {21--33},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2019_22_2_a1/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - On $\mathbb R$-linear problem and truncated Wiener--Hopf equation
JO  - Matematičeskie trudy
PY  - 2019
SP  - 21
EP  - 33
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2019_22_2_a1/
LA  - ru
ID  - MT_2019_22_2_a1
ER  - 
%0 Journal Article
%A A. F. Voronin
%T On $\mathbb R$-linear problem and truncated Wiener--Hopf equation
%J Matematičeskie trudy
%D 2019
%P 21-33
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2019_22_2_a1/
%G ru
%F MT_2019_22_2_a1
A. F. Voronin. On $\mathbb R$-linear problem and truncated Wiener--Hopf equation. Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 21-33. http://geodesic.mathdoc.fr/item/MT_2019_22_2_a1/