Inverse problems with pointwise overdetermination for some quasilinear parabolic systems
Matematičeskie trudy, Tome 22 (2019) no. 1, pp. 178-204
Voir la notice de l'article provenant de la source Math-Net.Ru
In the article, we examine well-posedness questions in the Sobolev spaces of the inverse source problem in the case of a quasilinear parabolic system of the second order. The main part of the operator is linear. The overdetermination conditions are values of a solution at some collection of interior points. It is demonstrated that, in the case of at most linear growth of the nonlinearity, there exists a unique global (in time) solution and the problem is well-posed in the Sobolev classes. The conditions on the data are minimal and the results are sharp.
@article{MT_2019_22_1_a6,
author = {S. G. Pyatkov and V. V. Rotko},
title = {Inverse problems with pointwise overdetermination for some quasilinear parabolic systems},
journal = {Matemati\v{c}eskie trudy},
pages = {178--204},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2019_22_1_a6/}
}
TY - JOUR AU - S. G. Pyatkov AU - V. V. Rotko TI - Inverse problems with pointwise overdetermination for some quasilinear parabolic systems JO - Matematičeskie trudy PY - 2019 SP - 178 EP - 204 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2019_22_1_a6/ LA - ru ID - MT_2019_22_1_a6 ER -
S. G. Pyatkov; V. V. Rotko. Inverse problems with pointwise overdetermination for some quasilinear parabolic systems. Matematičeskie trudy, Tome 22 (2019) no. 1, pp. 178-204. http://geodesic.mathdoc.fr/item/MT_2019_22_1_a6/