Inverse problems with pointwise overdetermination for some quasilinear parabolic systems
Matematičeskie trudy, Tome 22 (2019) no. 1, pp. 178-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, we examine well-posedness questions in the Sobolev spaces of the inverse source problem in the case of a quasilinear parabolic system of the second order. The main part of the operator is linear. The overdetermination conditions are values of a solution at some collection of interior points. It is demonstrated that, in the case of at most linear growth of the nonlinearity, there exists a unique global (in time) solution and the problem is well-posed in the Sobolev classes. The conditions on the data are minimal and the results are sharp.
@article{MT_2019_22_1_a6,
     author = {S. G. Pyatkov and V. V. Rotko},
     title = {Inverse problems with pointwise overdetermination for some quasilinear parabolic systems},
     journal = {Matemati\v{c}eskie trudy},
     pages = {178--204},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2019_22_1_a6/}
}
TY  - JOUR
AU  - S. G. Pyatkov
AU  - V. V. Rotko
TI  - Inverse problems with pointwise overdetermination for some quasilinear parabolic systems
JO  - Matematičeskie trudy
PY  - 2019
SP  - 178
EP  - 204
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2019_22_1_a6/
LA  - ru
ID  - MT_2019_22_1_a6
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%A V. V. Rotko
%T Inverse problems with pointwise overdetermination for some quasilinear parabolic systems
%J Matematičeskie trudy
%D 2019
%P 178-204
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2019_22_1_a6/
%G ru
%F MT_2019_22_1_a6
S. G. Pyatkov; V. V. Rotko. Inverse problems with pointwise overdetermination for some quasilinear parabolic systems. Matematičeskie trudy, Tome 22 (2019) no. 1, pp. 178-204. http://geodesic.mathdoc.fr/item/MT_2019_22_1_a6/

[1] Alifanov O. M., Artyukhov E. A., Nenarokomov A. V., Obratnye zadachi slozhnogo teploobmena, Yanus-K, M., 2009

[2] Belov Yu. Ya., Korshun K. V., “O zadache identifikatsii funktsii istochnika dlya uravneniya tipa Byurgersa”, Zhurn. SFU. Ser. Matem. i fiz., 5:4 (2012), 497–506

[3] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastymi proizvodnymi vtorogo poryadka, Nauka, M., 1989

[4] Kalinina E. A., “Chislennoe issledovanie obratnoi zadachi vosstanovleniya plotnosti istochnika dvumernogo nestatsionarnogo uravneniya konvektsii-diffuzii”, Dalnevost. matem. zhurn., 5:1 (2004), 89–99

[5] Kriksin Yu. A., Plyuschev S. N., Samarskaya E. A., Tishkin V. F., “Obratnaya zadacha vosstanovleniya plotnosti istochnika dlya uravneniya konvektsii-diffuzii”, Matem. modelir., 7:11 (1995), 95–108 | MR | Zbl

[6] Kuliev M. A., “Mnogomernaya obratnaya zadacha dlya parabolicheskogo uravneniya v ogranichennoi oblasti”, Nelineinye granichnye zadachi, 2004, no. 14, 138–145 | MR | Zbl

[7] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[8] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[9] Prilepko A. I., Solovev V. V., “O razreshimosti obratnykh kraevykh zadach opredeleniya koeffitsienta pered mladshei proizvodnoi v parabolicheskom uravnenii”, Differents. uravneniya, 23:1 (1987), 136–143 | MR | Zbl

[10] Prilepko A. I., Solovev V. V., “Teoremy razreshimosti i metod Rote v obratnykh zadachakh dlya uravneniya parabolicheskogo tipa”, Differents. uravneniya, 23:10 (1987), 1791–1799 | MR | Zbl

[11] Pyatkov S. G., Samkov M. L., “O nekotorykh klassakh koeffitsientnykh obratnykh zadach dlya parabolicheskikh sistem uravnenii”, Matem. tr., 15:1 (2012), 155–177 | Zbl

[12] Pyatkov S. G., Rotko V. V., “Ob opredelenii funktsii istochnika v kvazilineinykh parabolicheskikh zadachakh s tochechnymi usloviyami pereopredeleniya”, Vestnik YuUrGU. Ser. mat., mekh., fiz., 9:4 (2017), 19–26 | Zbl

[13] Solovev V. V., “Suschestvovanie resheniya v «tselom» obratnoi zadachi opredeleniya istochnika v kvazilineinom uravnenii parabolicheskogo tipa”, Differents. uravneniya, 32:4 (1996), 536–544 | MR | Zbl

[14] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980

[15] Uspenskii S. V., Demidenko G. V., Perepelkin V. G., Teoremy vlozheniya i prilozheniya k differentsialnym uravneniyam, Nauka, Novosibirsk, 1984 | MR

[16] Afinogenova O. A., Belov Yu. Ya., Frolenkov I. V., “Stabilization of the solution to the identification problem of the source function for a one-dimensional parabolic equation”, Dokl. Math., 79:1 (2009), 70–72 | DOI | MR | Zbl

[17] Alifanov O. M., Inverse Heat Transfer Problems, Springer-Verlag, Berlin, 1994 | Zbl

[18] Amann H., Linear and Quasilinear Parabolic Problems, v. I, Monographs in Mathematics, 89, Birkhäuser Verlag, Basel, etc., 1995 | MR | Zbl

[19] Amann H., “Operator-Valued Fourier multipliers, vector-valued Besov spaces, and applications”, Math. Nachr., 186:1 (1997), 5–56 | DOI | MR | Zbl

[20] Amann H., “Compact embeddings of vector-valued Sobolev and Besov spaces”, Glasnik Mat. Ser. III, 35(55):1 (2000), 161–177 | MR | Zbl

[21] Badia A. El, Hamdi A., “Inverse source problem in an advection-dispersion-reaction system: application to water pollution”, Inverse Problems, 23:5 (2007), 2103–2120 | DOI | MR | Zbl

[22] Badia A. El, Ha-Duong T., “Inverse source problem for the heat equation: application to a pollution detection problem”, J. Inverse Ill-Posed Probl., 10:6 (2002), 585–599 | DOI | MR | Zbl

[23] Denk R., Hieber M., Prüss J., “Optimal $L_{p}-L_{q}$-estimates for parabolic boundary value problems with inhomogeneous data”, Math. Z., 257:1 (2007), 193–224 | DOI | MR | Zbl

[24] Guidetti D., “Asymptotic expansion of solutions to an inverse problem of parabolic type”, Adv. Differential Equations, 13:5–6 (2008), 399–426 | MR | Zbl

[25] Guidetti D., “Convergence to a stationary state of solutions to inverse problems of parabolic type”, Discrete Contin. Dynam. Systems. Ser. S, 6:3 (2013), 711–722 | DOI | MR | Zbl

[26] Lunardi A., Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and Their Applications, 16, Birkhäuser, Basel, 1995 | MR | Zbl

[27] Mamonov A. V., Tsai Y.-H. R., “Point source identification in nonlinear advection-diffusion-reaction systems”, Inverse Problems, 29:3 (2013) | DOI | MR | Zbl

[28] Marchuk G. I., Mathematical Models in Environmental Problems, Studies in Mathematics and Its Applications, 16, Elsevier Science Publishers, Amsterdam, 1986 | MR

[29] Ozisik M. N. Orlande H. R. B., Inverse Heat Transfer, Taylor Francis, New York, 2000 | MR

[30] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, Inc., New York, 1999 | MR

[31] Pyatkov S. G., Rotko V. V., “On some parabolic inverse problems with the pointwise overdetermination”, AIP Conference Proceedings, 1907 (2017), 020008 | DOI

[32] Pyatkov S. G., Samkov M. L., “Solvability of some inverse problems for the nonstationary heat-and-mass-transfer system”, J. Math. Anal. Appl., 446:2 (2017), 1449–1465 | DOI | MR | Zbl