Rank functions for stable diagrams
Matematičeskie trudy, Tome 22 (2019) no. 1, pp. 119-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be the diagram of a sufficiently homogeneous model. For types that are realized in this model, we introduce certain rank functions and prove the following assertions: (1) If, for each type, the rank is less than $\infty$ then the diagram is stable; (2) if the diagram $D$ is stable then the set of non-algebraic types of rank less than $\infty$ is large enough.
@article{MT_2019_22_1_a4,
     author = {K. Zh. Kudaǐbergenov},
     title = {Rank functions for stable diagrams},
     journal = {Matemati\v{c}eskie trudy},
     pages = {119--126},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2019_22_1_a4/}
}
TY  - JOUR
AU  - K. Zh. Kudaǐbergenov
TI  - Rank functions for stable diagrams
JO  - Matematičeskie trudy
PY  - 2019
SP  - 119
EP  - 126
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2019_22_1_a4/
LA  - ru
ID  - MT_2019_22_1_a4
ER  - 
%0 Journal Article
%A K. Zh. Kudaǐbergenov
%T Rank functions for stable diagrams
%J Matematičeskie trudy
%D 2019
%P 119-126
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2019_22_1_a4/
%G ru
%F MT_2019_22_1_a4
K. Zh. Kudaǐbergenov. Rank functions for stable diagrams. Matematičeskie trudy, Tome 22 (2019) no. 1, pp. 119-126. http://geodesic.mathdoc.fr/item/MT_2019_22_1_a4/

[1] Kudaibergenov K. Zh., “Odnorodnye modeli i stabilnye diagrammy”, Sib. matem. zhurn., 43:5 (2002), 1064–1076 | MR

[2] Hyttinen T., Lessmann O., “A rank for the class of elementary submodels of a superstable homogeneous model”, J. Symbolic Logic, 67:4 (2002), 1469–1482 | DOI | MR | Zbl

[3] Shelah S., “Finite diagrams stable in power”, Ann. Math. Logic, 2 (1970), 69–118 | DOI | MR | Zbl