Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2019_22_1_a2, author = {T. S. Busel and I. D. Suprunenko}, title = {The block structure of the images of regular unipotent elements from~subsystem symplectic subgroups of rank $2$ in irreducible representations of symplectic {groups.~I}}, journal = {Matemati\v{c}eskie trudy}, pages = {68--100}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2019_22_1_a2/} }
TY - JOUR AU - T. S. Busel AU - I. D. Suprunenko TI - The block structure of the images of regular unipotent elements from~subsystem symplectic subgroups of rank $2$ in irreducible representations of symplectic groups.~I JO - Matematičeskie trudy PY - 2019 SP - 68 EP - 100 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2019_22_1_a2/ LA - ru ID - MT_2019_22_1_a2 ER -
%0 Journal Article %A T. S. Busel %A I. D. Suprunenko %T The block structure of the images of regular unipotent elements from~subsystem symplectic subgroups of rank $2$ in irreducible representations of symplectic groups.~I %J Matematičeskie trudy %D 2019 %P 68-100 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2019_22_1_a2/ %G ru %F MT_2019_22_1_a2
T. S. Busel; I. D. Suprunenko. The block structure of the images of regular unipotent elements from~subsystem symplectic subgroups of rank $2$ in irreducible representations of symplectic groups.~I. Matematičeskie trudy, Tome 22 (2019) no. 1, pp. 68-100. http://geodesic.mathdoc.fr/item/MT_2019_22_1_a2/
[1] Burbaki N., Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR
[2] Burbaki N., Gruppy i algebry Li, Gl. VII–VIII, Mir, M., 1978 | MR
[3] Busel T. S., Suprunenko I. D., “Blochnaya struktura obrazov regulyarnykh unipotentnykh elementov iz podsistemnykh podgrupp tipa $C_2$ v neprivodimykh predstavleniyakh grupp tipa $C_n$ s lokalno malymi starshimi vesami”, Dokl. NAN Belarusi, 60:1 (2016), 12–17 | MR | Zbl
[4] Velichko M. V., “O povedenii kornevykh elementov v modulyarnykh predstavleniyakh simplekticheskikh grupp”, Tr. In-ta matem., 14:2 (2006), 28–34
[5] Velichko M. V., Suprunenko I. D., “Malye kvadratichnye elementy v predstavleniyakh spetsialnoi lineinoi gruppy s bolshimi starshimi vesami”, Zap. nauchn. sem. POMI, 343, 2007, 84–120
[6] Velichko M. V., “Struktura blokov Zhordana obrazov dlinnykh kornevykh elementov v modulyarnykh predstavleniyakh grupp tipov $B_n$ i $F_4$”, Tr. In-ta matem., 19:2 (2011), 7–11 | Zbl
[7] Zhelobenko D. P., “Klassicheskie gruppy. Spektralnyi analiz konechnomernykh predstavlenii”, UMN, 17:1(103) (1962), 27–120 | MR | Zbl
[8] Zalesskii A. E., Suprunenko I. D., “Srezannye simmetricheskie stepeni estestvennykh realizatsii grupp $SL_m (P)$ i $Sp_m (P)$ i ikh ogranicheniya na podgruppy”, Sib. matem. zhurn., 31:4 (1990), 33–46 | MR
[9] Osinovskaya A. A., “Regulyarnye unipotentnye elementy iz podsistemnykh podgrupp tipa $C_2$ v predstavleniyakh”, Tr. In-ta matem., 17:1 (2009), 119–126 | Zbl
[10] Osinovskaya A. A., Suprunenko I. D., “Unipotentnye elementy iz podsistemnykh podgrupp tipa $A_3$ v predstavleniyakh spetsialnoi lineinoi gruppy”, Dokl. NAN Belarusi, 56:4 (2012), 11–15 | MR | Zbl
[11] Premet A. A., “Vesa infinitezimalno neprivodimykh predstavlenii grupp Shevalle nad polem prostoi kharakteristiki”, Matem. sb., 133(175):2(6) (1987), 167–183
[12] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975
[13] Suprunenko I. D., “Minimalnye polinomy elementov poryadka $p$ v neprivodimykh predstavleniyakh grupp Shevalle nad polyami kharakteristiki $p$”, Voprosy algebry i logiki, Tr. In-ta matematiki SO RAN, 30, Izd-vo In-ta matematiki, Novosibirsk, 1996, 126–163 | Zbl
[14] Feit U., Teoriya predstavlenii konechnykh grupp, Nauka, M., 1990
[15] Borel A., “Properties and linear representations of Chevalley groups”, Semin. Algebr. Groups Related Finite Groups (Princeton 1968/69), Lecture Notes in Math., 131, Springer, Berlin, 1970, A1–A55 | MR
[16] Braden B., “Restricted representations of classical Lie algebras of type $A_2$ and $B_2$”, Bull. Amer. Math. Soc. (N.S.), 73 (1967), 482–486 | DOI | MR | Zbl
[17] Carter R. W., Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley and Sons, New York etc., 1985 | MR | Zbl
[18] Donkin S., “On tilting modules for algebraic groups”, Math. Z., 212:1 (1993), 39–60 | DOI | MR | Zbl
[19] Humphreys J., Modular Representations of Finite Groups of Lie Types, London Math. Soc. Lecture Note Ser., 326, Cambridge Univ. Press, Cambridge, 2006 | MR
[20] Jantzen J. C., Representations of Algebraic Groups, Math. Surveys and Monographs, 107, 2nd ed., Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[21] Osinovskaya A. A., Nilpotent Elements in Irreducible Representations of Simple Lie Algebras of Small Rank, Preprint No 5(554), National Academy of Sciences of Belarus, Institute of Mathematics, Minsk, 1999
[22] Osinovskaya A. A., “Restrictions of representations of algebraic groups of types $E_n$ and $F_4$ to naturally embedded $A_1$-subgroups and the behavior of root elements”, Comm. Algebra, 33:1 (2005), 213–220 | DOI | MR | Zbl
[23] Osinovskaya A. A., Suprunenko I. D., “On the Jordan block structure of images of some unipotent elements in modular irreducible representations of the classical algebraic groups”, J. Algebra, 273:2 (2004), 586–600 | DOI | MR | Zbl
[24] Seitz G. M., The Maximal Subgroups of Classical Algebraic Groups, Mem. Amer. Math. Soc., 67, no. 365, 1987 | MR
[25] Seitz G. M., “Unipotent elements, tilting modules, and saturation”, Invent. Math., 141:3 (2000), 467–502 | DOI | MR | Zbl
[26] Smith S. D., “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl
[27] Suprunenko I. D., The Minimal Polynomials of Unipotent Elements in Irreducible Representations of the Classical Groups in Odd Characteristic, Mem. Amer. Math. Soc., 200, no. 939, 2009 | MR
[28] Velichko M. V., “On the behavior of the root elements in irreducible representations of simple algebraic groups”, Tr. In-ta matem., 13:2 (2005), 116–121 | MR