The block structure of the images of regular unipotent elements from~subsystem symplectic subgroups of rank $2$ in irreducible representations of symplectic groups.~I
Matematičeskie trudy, Tome 22 (2019) no. 1, pp. 68-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dimensions of the Jordan blocks in the images of regular unipotent elements from subsystem subgroups of type $C_2$ in $p$-restricted irreducible representations of groups of type $C_n$ in characteristic $p\geq 11$ with locally small highest weights are found. These results can be applied for investigating the behavior of unipotent elements in modular representations of simple algebraic groups and recognizing representations and linear groups. The article consists of 3 parts. In the first one, preliminary lemmas that are necessary for proving the principal results, are contained and the case where all weights of the restriction of a representation considered to a subgroup of type $A_1$ containing a relevant unipotent element are less than $p$, is investigated.
@article{MT_2019_22_1_a2,
     author = {T. S. Busel and I. D. Suprunenko},
     title = {The block structure of the images of regular unipotent elements from~subsystem symplectic subgroups of rank $2$ in irreducible representations of symplectic {groups.~I}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {68--100},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2019_22_1_a2/}
}
TY  - JOUR
AU  - T. S. Busel
AU  - I. D. Suprunenko
TI  - The block structure of the images of regular unipotent elements from~subsystem symplectic subgroups of rank $2$ in irreducible representations of symplectic groups.~I
JO  - Matematičeskie trudy
PY  - 2019
SP  - 68
EP  - 100
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2019_22_1_a2/
LA  - ru
ID  - MT_2019_22_1_a2
ER  - 
%0 Journal Article
%A T. S. Busel
%A I. D. Suprunenko
%T The block structure of the images of regular unipotent elements from~subsystem symplectic subgroups of rank $2$ in irreducible representations of symplectic groups.~I
%J Matematičeskie trudy
%D 2019
%P 68-100
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2019_22_1_a2/
%G ru
%F MT_2019_22_1_a2
T. S. Busel; I. D. Suprunenko. The block structure of the images of regular unipotent elements from~subsystem symplectic subgroups of rank $2$ in irreducible representations of symplectic groups.~I. Matematičeskie trudy, Tome 22 (2019) no. 1, pp. 68-100. http://geodesic.mathdoc.fr/item/MT_2019_22_1_a2/

[1] Burbaki N., Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR

[2] Burbaki N., Gruppy i algebry Li, Gl. VII–VIII, Mir, M., 1978 | MR

[3] Busel T. S., Suprunenko I. D., “Blochnaya struktura obrazov regulyarnykh unipotentnykh elementov iz podsistemnykh podgrupp tipa $C_2$ v neprivodimykh predstavleniyakh grupp tipa $C_n$ s lokalno malymi starshimi vesami”, Dokl. NAN Belarusi, 60:1 (2016), 12–17 | MR | Zbl

[4] Velichko M. V., “O povedenii kornevykh elementov v modulyarnykh predstavleniyakh simplekticheskikh grupp”, Tr. In-ta matem., 14:2 (2006), 28–34

[5] Velichko M. V., Suprunenko I. D., “Malye kvadratichnye elementy v predstavleniyakh spetsialnoi lineinoi gruppy s bolshimi starshimi vesami”, Zap. nauchn. sem. POMI, 343, 2007, 84–120

[6] Velichko M. V., “Struktura blokov Zhordana obrazov dlinnykh kornevykh elementov v modulyarnykh predstavleniyakh grupp tipov $B_n$ i $F_4$”, Tr. In-ta matem., 19:2 (2011), 7–11 | Zbl

[7] Zhelobenko D. P., “Klassicheskie gruppy. Spektralnyi analiz konechnomernykh predstavlenii”, UMN, 17:1(103) (1962), 27–120 | MR | Zbl

[8] Zalesskii A. E., Suprunenko I. D., “Srezannye simmetricheskie stepeni estestvennykh realizatsii grupp $SL_m (P)$ i $Sp_m (P)$ i ikh ogranicheniya na podgruppy”, Sib. matem. zhurn., 31:4 (1990), 33–46 | MR

[9] Osinovskaya A. A., “Regulyarnye unipotentnye elementy iz podsistemnykh podgrupp tipa $C_2$ v predstavleniyakh”, Tr. In-ta matem., 17:1 (2009), 119–126 | Zbl

[10] Osinovskaya A. A., Suprunenko I. D., “Unipotentnye elementy iz podsistemnykh podgrupp tipa $A_3$ v predstavleniyakh spetsialnoi lineinoi gruppy”, Dokl. NAN Belarusi, 56:4 (2012), 11–15 | MR | Zbl

[11] Premet A. A., “Vesa infinitezimalno neprivodimykh predstavlenii grupp Shevalle nad polem prostoi kharakteristiki”, Matem. sb., 133(175):2(6) (1987), 167–183

[12] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975

[13] Suprunenko I. D., “Minimalnye polinomy elementov poryadka $p$ v neprivodimykh predstavleniyakh grupp Shevalle nad polyami kharakteristiki $p$”, Voprosy algebry i logiki, Tr. In-ta matematiki SO RAN, 30, Izd-vo In-ta matematiki, Novosibirsk, 1996, 126–163 | Zbl

[14] Feit U., Teoriya predstavlenii konechnykh grupp, Nauka, M., 1990

[15] Borel A., “Properties and linear representations of Chevalley groups”, Semin. Algebr. Groups Related Finite Groups (Princeton 1968/69), Lecture Notes in Math., 131, Springer, Berlin, 1970, A1–A55 | MR

[16] Braden B., “Restricted representations of classical Lie algebras of type $A_2$ and $B_2$”, Bull. Amer. Math. Soc. (N.S.), 73 (1967), 482–486 | DOI | MR | Zbl

[17] Carter R. W., Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley and Sons, New York etc., 1985 | MR | Zbl

[18] Donkin S., “On tilting modules for algebraic groups”, Math. Z., 212:1 (1993), 39–60 | DOI | MR | Zbl

[19] Humphreys J., Modular Representations of Finite Groups of Lie Types, London Math. Soc. Lecture Note Ser., 326, Cambridge Univ. Press, Cambridge, 2006 | MR

[20] Jantzen J. C., Representations of Algebraic Groups, Math. Surveys and Monographs, 107, 2nd ed., Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[21] Osinovskaya A. A., Nilpotent Elements in Irreducible Representations of Simple Lie Algebras of Small Rank, Preprint No 5(554), National Academy of Sciences of Belarus, Institute of Mathematics, Minsk, 1999

[22] Osinovskaya A. A., “Restrictions of representations of algebraic groups of types $E_n$ and $F_4$ to naturally embedded $A_1$-subgroups and the behavior of root elements”, Comm. Algebra, 33:1 (2005), 213–220 | DOI | MR | Zbl

[23] Osinovskaya A. A., Suprunenko I. D., “On the Jordan block structure of images of some unipotent elements in modular irreducible representations of the classical algebraic groups”, J. Algebra, 273:2 (2004), 586–600 | DOI | MR | Zbl

[24] Seitz G. M., The Maximal Subgroups of Classical Algebraic Groups, Mem. Amer. Math. Soc., 67, no. 365, 1987 | MR

[25] Seitz G. M., “Unipotent elements, tilting modules, and saturation”, Invent. Math., 141:3 (2000), 467–502 | DOI | MR | Zbl

[26] Smith S. D., “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl

[27] Suprunenko I. D., The Minimal Polynomials of Unipotent Elements in Irreducible Representations of the Classical Groups in Odd Characteristic, Mem. Amer. Math. Soc., 200, no. 939, 2009 | MR

[28] Velichko M. V., “On the behavior of the root elements in irreducible representations of simple algebraic groups”, Tr. In-ta matem., 13:2 (2005), 116–121 | MR