Optimal feedback control for a thermoviscoelastic model of the motion of water polymer solutions
Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 181-203
Voir la notice de l'article provenant de la source Math-Net.Ru
We study an optimal feedback control problem for an initial boundary value problem of a thermoviscoelastic model describing the motion of weakly concentrated water polymer solutions in the presence of dependence of the viscosity on the temprature. We prove the existence of an optimal solution minimizing to a given bounded lower semicontinuous quality functional. For proving the existence of an optimal solution, we use the topological approximation method for studying problems in hydrodynamics.
@article{MT_2018_21_2_a8,
author = {V. G. Zvyagin and A. V. Zvyagin},
title = {Optimal feedback control for a thermoviscoelastic model of the motion of water polymer solutions},
journal = {Matemati\v{c}eskie trudy},
pages = {181--203},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2018_21_2_a8/}
}
TY - JOUR AU - V. G. Zvyagin AU - A. V. Zvyagin TI - Optimal feedback control for a thermoviscoelastic model of the motion of water polymer solutions JO - Matematičeskie trudy PY - 2018 SP - 181 EP - 203 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2018_21_2_a8/ LA - ru ID - MT_2018_21_2_a8 ER -
V. G. Zvyagin; A. V. Zvyagin. Optimal feedback control for a thermoviscoelastic model of the motion of water polymer solutions. Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 181-203. http://geodesic.mathdoc.fr/item/MT_2018_21_2_a8/