Symmetrizations of distance functions and $f$-quasimetric spaces
Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 150-162

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove theorems on the topological equivalence of distance functions on spaces with weak and reverse weak symmetries. We study the topology induced by a distance function $\rho$ under the condition of the existence of a lower symmetrization for $\rho$ by an $f$-quasimetric. For $(q_1,q_2)$-metric spaces $(X,\rho)$, we also study the properties of their symmetrizations $ \min\big\{\rho(x,y),\rho(y,x) \big\} $ and $\max\big\{\rho(x,y),\rho(y,x) \big\} $. The relationship between the extreme points of a $(q_1,q_2)$-quasimetric $\rho$ and its symmetrizations $ \min\!\big\{\rho(x,y),\rho(y,x)\hskip-1pt \big\} $ and $\max\big\{\rho(x,y),\rho(y,x) \big\} $.
@article{MT_2018_21_2_a6,
     author = {A. V. Greshnov},
     title = {Symmetrizations of distance functions and $f$-quasimetric spaces},
     journal = {Matemati\v{c}eskie trudy},
     pages = {150--162},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2018_21_2_a6/}
}
TY  - JOUR
AU  - A. V. Greshnov
TI  - Symmetrizations of distance functions and $f$-quasimetric spaces
JO  - Matematičeskie trudy
PY  - 2018
SP  - 150
EP  - 162
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2018_21_2_a6/
LA  - ru
ID  - MT_2018_21_2_a6
ER  - 
%0 Journal Article
%A A. V. Greshnov
%T Symmetrizations of distance functions and $f$-quasimetric spaces
%J Matematičeskie trudy
%D 2018
%P 150-162
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2018_21_2_a6/
%G ru
%F MT_2018_21_2_a6
A. V. Greshnov. Symmetrizations of distance functions and $f$-quasimetric spaces. Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 150-162. http://geodesic.mathdoc.fr/item/MT_2018_21_2_a6/