Symmetrizations of distance functions and $f$-quasimetric spaces
Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 150-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove theorems on the topological equivalence of distance functions on spaces with weak and reverse weak symmetries. We study the topology induced by a distance function $\rho$ under the condition of the existence of a lower symmetrization for $\rho$ by an $f$-quasimetric. For $(q_1,q_2)$-metric spaces $(X,\rho)$, we also study the properties of their symmetrizations $ \min\big\{\rho(x,y),\rho(y,x) \big\} $ and $\max\big\{\rho(x,y),\rho(y,x) \big\} $. The relationship between the extreme points of a $(q_1,q_2)$-quasimetric $\rho$ and its symmetrizations $ \min\!\big\{\rho(x,y),\rho(y,x)\hskip-1pt \big\} $ and $\max\big\{\rho(x,y),\rho(y,x) \big\} $.
@article{MT_2018_21_2_a6,
     author = {A. V. Greshnov},
     title = {Symmetrizations of distance functions and $f$-quasimetric spaces},
     journal = {Matemati\v{c}eskie trudy},
     pages = {150--162},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2018_21_2_a6/}
}
TY  - JOUR
AU  - A. V. Greshnov
TI  - Symmetrizations of distance functions and $f$-quasimetric spaces
JO  - Matematičeskie trudy
PY  - 2018
SP  - 150
EP  - 162
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2018_21_2_a6/
LA  - ru
ID  - MT_2018_21_2_a6
ER  - 
%0 Journal Article
%A A. V. Greshnov
%T Symmetrizations of distance functions and $f$-quasimetric spaces
%J Matematičeskie trudy
%D 2018
%P 150-162
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2018_21_2_a6/
%G ru
%F MT_2018_21_2_a6
A. V. Greshnov. Symmetrizations of distance functions and $f$-quasimetric spaces. Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 150-162. http://geodesic.mathdoc.fr/item/MT_2018_21_2_a6/

[1] Arutyunov A. V., Greshnov A. V., “Teoriya $(q_1,q_2)$-kvazimetricheskikh prostranstv i tochki sovpadeniya”, Dokl. RAN, 469:5 (2016), 527–531 | DOI | MR | Zbl

[2] Arutyunov A. V., Greshnov A. V., “Teoriya $(q_1,q_2)$-kvazimetricheskikh prostranstv. Nakryvayuschie otobrazheniya i tochki sovpadeniya”, Izv. RAN. Ser. matem., 82:2 (2018), 3–32 | DOI | MR | Zbl

[3] Greshnov A. V., “Dokazatelstvo teoremy Gromova ob odnorodnoi nilpotentnoi approksimatsii dlya vektornykh polei klassa $C^1$”, Matem. tr., 15:2 (2012), 72–88 | Zbl

[4] Greshnov A. V., “$(q_1,q_2)$-Kvazimetriki, bilipshitsevo ekvivalentnye $1$-kvazimetrikam”, Matem. tr., 20:1 (2017), 81–96 | MR | Zbl

[5] Greshnov A. V., “Regulyarizatsiya funktsii rasstoyaniya i aksiomy otdelimosti na $(q_1,q_2)$-kvazimetricheskikh prostranstvakh / Veschestvennyi, kompleksnyi i funktsionalnyi analiz”, Sib. elektron. matem. izv., 14 (2017), 765–773 | MR | Zbl

[6] Nedev S. I., “$O$-metrizuemye prostranstva”, Tr. MMO, 24, 1971, 201–236 | MR | Zbl

[7] Aimar H., Forzani L., Toledano R., “Balls and quasi-metrics: a space of homogeneous type modeling the real analysis related to the Monge–Ampére equation”, Fourier Anal. Appl., 4:4–5 (1998), 377–381 | DOI | MR | Zbl

[8] Arutyunov A. V., Greshnov A. V., Lokutsievskii L. V., Storojuk K. V., “Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics”, Topology Appl., 221 (2017), 178–194 | DOI | MR | Zbl

[9] Valanzat M., “Sobre la metrización de los espacios cuasi métricos”, Gaz. Mat. Lisboa, 50 (1951), 90–94

[10] Heinonen J., Lectures on Analysis on Metric Spaces, Springer-Verlag, New York, NY, 2001 | MR | Zbl

[11] Karmanova M., Vodop'yanov S., “Geometry of Carnot–Carathéodory spaces, differentiability, coarea and area formulas”, Analysis and Mathematical Physics, Trends Math., Birkhäuser, Basel, 2009, 233–335 | MR | Zbl

[12] Sengupta R., “On fixed points of contraction mappings acting in $(q_1, q_2)$-quasimetric spaces and geometric properties of these spaces”, Eurasian Math. J., 8:3 (2017), 70–76 | MR

[13] Wilson W. A., “On quasi-metric spaces”, Amer. J. Math., 53:3 (1931), 675–684 | DOI | MR