Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2018_21_2_a5, author = {V. L. Vaskevich and A. I. Shcherbakov}, title = {Convergence of the successive approximation method in the {Cauchy} problem for an integro-differential equation with quadratic nonlinearity}, journal = {Matemati\v{c}eskie trudy}, pages = {136--149}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2018_21_2_a5/} }
TY - JOUR AU - V. L. Vaskevich AU - A. I. Shcherbakov TI - Convergence of the successive approximation method in the Cauchy problem for an integro-differential equation with quadratic nonlinearity JO - Matematičeskie trudy PY - 2018 SP - 136 EP - 149 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2018_21_2_a5/ LA - ru ID - MT_2018_21_2_a5 ER -
%0 Journal Article %A V. L. Vaskevich %A A. I. Shcherbakov %T Convergence of the successive approximation method in the Cauchy problem for an integro-differential equation with quadratic nonlinearity %J Matematičeskie trudy %D 2018 %P 136-149 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2018_21_2_a5/ %G ru %F MT_2018_21_2_a5
V. L. Vaskevich; A. I. Shcherbakov. Convergence of the successive approximation method in the Cauchy problem for an integro-differential equation with quadratic nonlinearity. Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 136-149. http://geodesic.mathdoc.fr/item/MT_2018_21_2_a5/
[1] Vainberg M. M., “Integro-differentsialnye uravneniya”, Itogi nauki. Matem. analiz. Teoriya veroyatnostei. Regulirovanie 1962, VINITI, M., 1964, 5–37
[2] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR
[3] Bell N. K., Grebenev V. N., Medvedev S. B., Nazarenko S. V., “Self-similar evolution of Alfven wave turbulence”, J. Phys. A: Math. Theor., 50:43 (2017) | DOI | MR
[4] Galtier S., “Wave turbulence in astrophysics”, Advances in Wave Turbulence, World Scientific Series on Nonlinear Science, Ser. A, 83, World Scientific Publishing, Singapore, 2013, 73–111 | DOI | MR | Zbl
[5] Galtier S., Nazarenko S., Newell A. C., Pouquet A., “A weak turbulence theory for incompressible magnetohydrodynamics”, J. Plasma Physics, 63:5 (2000), 447–488 | DOI
[6] Galtier S., Buchlin E., “Nonlinear diffusion equations for anisotropic magnetohydrodynamic turbulence with cross-helicity”, The Astrophysical J., 722 (2010), 1977–1983 | DOI
[7] Nazarenko S., Wave Turbulence, Lecture Notes in Physics, 825, Springer, Berlin–Heidelberg, 2011 | DOI | MR | Zbl