Iterative processes for ill-posed problems with a monotone operator
Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 117-135

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem on constructing a stable approximate solution of an inverse problem formulated as a nonlinear irregular equation with a monotone operator. We suggest a two-stage method based on Lavrentiev's regularization scheme and iterative approximation with the use of either modified Newton's method or a regularized $\kappa$-process. We prove that the iterative processes converge and the iterations possess the Fejér property. We show that our method generates a regularization algorithm under a certain adjustment of control parameters. On the set of source-like representable solutions, we find an optimal-order error estimate for the algorithm.
@article{MT_2018_21_2_a4,
     author = {V. V. Vasin},
     title = {Iterative processes for ill-posed problems with a monotone operator},
     journal = {Matemati\v{c}eskie trudy},
     pages = {117--135},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2018_21_2_a4/}
}
TY  - JOUR
AU  - V. V. Vasin
TI  - Iterative processes for ill-posed problems with a monotone operator
JO  - Matematičeskie trudy
PY  - 2018
SP  - 117
EP  - 135
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2018_21_2_a4/
LA  - ru
ID  - MT_2018_21_2_a4
ER  - 
%0 Journal Article
%A V. V. Vasin
%T Iterative processes for ill-posed problems with a monotone operator
%J Matematičeskie trudy
%D 2018
%P 117-135
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2018_21_2_a4/
%G ru
%F MT_2018_21_2_a4
V. V. Vasin. Iterative processes for ill-posed problems with a monotone operator. Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 117-135. http://geodesic.mathdoc.fr/item/MT_2018_21_2_a4/