Iterative processes for ill-posed problems with a monotone operator
Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 117-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem on constructing a stable approximate solution of an inverse problem formulated as a nonlinear irregular equation with a monotone operator. We suggest a two-stage method based on Lavrentiev's regularization scheme and iterative approximation with the use of either modified Newton's method or a regularized $\kappa$-process. We prove that the iterative processes converge and the iterations possess the Fejér property. We show that our method generates a regularization algorithm under a certain adjustment of control parameters. On the set of source-like representable solutions, we find an optimal-order error estimate for the algorithm.
@article{MT_2018_21_2_a4,
     author = {V. V. Vasin},
     title = {Iterative processes for ill-posed problems with a monotone operator},
     journal = {Matemati\v{c}eskie trudy},
     pages = {117--135},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2018_21_2_a4/}
}
TY  - JOUR
AU  - V. V. Vasin
TI  - Iterative processes for ill-posed problems with a monotone operator
JO  - Matematičeskie trudy
PY  - 2018
SP  - 117
EP  - 135
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2018_21_2_a4/
LA  - ru
ID  - MT_2018_21_2_a4
ER  - 
%0 Journal Article
%A V. V. Vasin
%T Iterative processes for ill-posed problems with a monotone operator
%J Matematičeskie trudy
%D 2018
%P 117-135
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2018_21_2_a4/
%G ru
%F MT_2018_21_2_a4
V. V. Vasin. Iterative processes for ill-posed problems with a monotone operator. Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 117-135. http://geodesic.mathdoc.fr/item/MT_2018_21_2_a4/

[1] Bakushinskii A. B., “Metody resheniya monotonnykh variatsionnykh neravenstv, osnovannye na printsipe iterativnoi regulyarizatsii”, Zh. vychisl. matem. i matem. fiz., 17:6 (1977), 1350–1362 | MR

[2] Vasin V. V., “Iteratsionnye metody resheniya nekorrektnykh zadach s apriornoi informatsiei v gilbertovykh prostranstvakh”, Zh. vychisl. matem. i matem. fiz., 28:7 (1988), 971–980

[3] Vasin V. V., “Modifitsirovannye protsessy nyutonovskogo tipa, porozhdayuschie feierovskie approksimatsii regulyarizovannykh reshenii nelineinykh uravnenii”, Tr. IMM UrO RAN, 19, no. 2, 2013, 85–97

[4] Vasin V. V., “Regulyarizovannye modifitsirovannye $\alpha$-protsessy dlya nelineinykh uravnenii s monotonnym operatorom”, DAN RAN, 469:1 (2016), 13–16 | DOI | Zbl

[5] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa. Teoriya i prilozheniya, NITs RKhD, M.–Izhevsk, 2005

[6] Vasin V. V., Skurydina A. F., “Dvukhetapnyi metod postroeniya regulyarizuyuschikh algoritmov dlya nelineinykh nekorrektnykh zadach”, Tr. IMM UrO RAN, 23, no. 1, 2017, 57–74

[7] Gaevskii Kh., Gregor K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[8] Eremin I. I., “Metody feierovskikh priblizhenii v vypuklom programmirovanii”, Matem. zametki, 3:2 (1968), 217–234 | MR

[9] Eremin I. I., “K obschei teorii feierovskikh otobrazhenii”, Matem. zapiski UrGU, 7:2 (1969), 50–58 | Zbl

[10] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978

[11] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969

[12] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988

[13] Rudin U., Funktsionalnyi analiz, Mir, M., 1975

[14] Bakushinsky A. B., Goncharsky A. V., Ill-Posed Problems. Theory and Applications, Kluwer Acad. Publ., Dordrecht, 1994 | MR

[15] Deimling K., Nonlinear Functional Analysis, Vieweg, Braunschweig, 1987

[16] Martinet B., “Determination approachee d'un point fixe d'une application pseudo-contractante. Cas de l'application prox”, C. R. Acad. Sci. Paris Sér. A-B, 274 (1972), 163–165 | MR | Zbl

[17] Tautenhahn U., “On the method of Lavrentiev regularization for nonlinear ill-posed problems”, Inverse Problems, 18:1 (2002), 191–207 | DOI | MR | Zbl

[18] Vasin V. V., Ageev A. L., Ill-Posed Problems with a Priori Information, VSP, Utrecht, the Netherlands, 1995 | MR | Zbl